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Cloud-Cluster Architecture for Detection in
Intermittently Connected Sensor Networks

Michal Yemini, Stephanie Gil, and Andrea J. Goldsmith

Abstract—We consider a centralized detection problem where
sensors experience noisy measurements and intermittent con-
nectivity to a centralized fusion center. The sensors collaborate
locally within predefined sensor clusters and fuse their noisy
sensor data to reach a common local estimate of the detected
event in each cluster. The connectivity of each sensor cluster
is intermittent and depends on the available communication
opportunities of the sensors to the fusion center. Upon receiving
the estimates from all the connected sensor clusters the fusion
center fuses the received estimates to make a final determination
regarding the occurrence of the event across the deployment
area. We refer to this hybrid communication scheme as a cloud-
cluster architecture. We propose a method for optimizing the
decision rule for each cluster and analyzing the expected detection
performance resulting from our hybrid scheme. Our method
is tractable and addresses the high computational complexity
caused by heterogeneous sensors’ and clusters’ detection quality,
heterogeneity in their communication opportunities, and non-
convexity of the loss function. Our analysis shows that clustering
the sensors provides resilience to noise in the case of low sensor
communication probability with the cloud. For larger clusters,
a steep improvement in detection performance is possible even
for a low communication probability by using our cloud-cluster
architecture.

I. INTRODUCTION

The next generation of wireless infrastructure enables cloud
connectivity, and with it, powerful centralized decision making
based on sensor data. However, cloud connectivity of sensors
cannot be guaranteed at all times, particularly for sensors
operating over mmWave frequency bands (see [2]–[8]) or in
complex and potentially remote environments (see [9]–[12]).
Thus, a new paradigm that takes intermittent connectivity of
sensors into account is needed. Currently, the analysis for
sensor networks often assumes one of two architectures: i)
a centralized architecture that is fully connected, or ii) a
distributed architecture, such as peer-to-cloud, where connec-
tivity is intermittent. In reality, a fully centralized case where
sensors convey information directly to the cloud, a.k.a. fusion
center (FC), is faulty since connectivity to it is intermittent.
Alternatively, a distributed architecture where a sensor conveys
its information directly to all of its neighbors to reach a
common estimate distributively is not always feasible [13]
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as this also suffers from a long convergence time in large
networks. Therefore, adopting either of these extremes can
be problematic when the assumption of a continuously con-
nected system is not practical, and alternatively, requiring fully
distributed communication leads to an overly conservative
system.

The best way to fuse noisy data between sensors locally, and
communicate this information to the cloud on an intermittent
and sporadic basis, optimizes the trade-off between accuracy
and reliability of transmission. Failure to correctly consoli-
date noisy information will sacrifice accuracy. Nonetheless,
requiring raw sensory data to be submitted over the cloud
can lead to poor reliability due to sparse connectivity or high
scheduling overhead due to a high connectivity requirement.
Thus, the question of how the communication infrastructure
affects resilience to noise and the decision making abilities
of sensors presents a knowledge gap in our understanding
of the vulnerability of multi-robot decision making systems
in real world environments where communication links are
unreliable. This work aims at closing this gap by developing
an analytical framework to evaluate the tradeoff between
reliability of transmission and accuracy of estimation, as well
as provide system designs that are robust to acute link failures.

As network architectures evolve, multi-sensor systems op-
erating in environments with limited connectivity may uti-
lize a combination of centralized and distributed network
architectures through a hybrid local (i.e., clustered) network
and a (sporadically available) cloud network. We call this a
cloud-cluster communication architecture. Such hybrid com-
munication architectures give rise to important questions such
as 1) how should the data be fused at a local level in
order to achieve the best global decision making ability at
the cloud? and 2) what is the optimal size for the sensor
clusters that would provide some resilience to sensor noise
and sporadic connectivity of sensors to the cloud? Answering
these questions would allow us the necessary insight to best
optimize a cloud-cluster communication architecture for multi-
sensor decision making.

This paper investigates the best architecture to achieve
reliable prediction in the case of multiple sensors detecting
an event of interest in the environment. In particular, we
study a hybrid architecture where clusters of sensors pre-
process their noisy observations, sending a compressed lower-
dimensional aggregate observation to the cloud according to
the probabilistic availability of the link. We develop a pa-
rameterized understanding of the trade-offs involved between
architectures; either using larger clusters of sensors approach-
ing a cluster-based (distributed) communication scheme, or

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3199415

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Harvard Library. Downloaded on October 07,2022 at 18:57:28 UTC from IEEE Xplore.  Restrictions apply. 



2

using smaller clusters of sensors approaching a cloud based
(centralized) communication scheme. We show that the cloud-
cluster architecture can drastically improve resilience to noise
when communication to the cloud is sporadic such as in
real-world environments. We quantify the sensing noise of
an individual sensor by its missed detection and false alarm
probabilities, and its intermittent connectivity to the cloud by a
Bernoulli random variable. Finally, we measure the prediction
performance of the network architectures we consider in this
work by the expected loss function, formally defined in (1).
The expected loss function is a linear combination of the
false alarm and missed detection probabilities at the FC
which captures the expected penalty caused by each of these
detection errors.

A. Paper Contributions
In what follows, we highlight the main contributions of our

work:
• Analyzing intermittent connectivity to the FC: We

present and formulate a model for sensor networks with
intermittent connectivity to the FC. We propose to uti-
lize a hybrid cloud-cluster communication architecture to
overcome the harmful effect of the sensors’ intermittent
connectivity to the FC. To the best of our knowledge
the case of intermittent connectivity to the FC, and the
use and accompanying analysis of sensor clustering as a
means to improve connectivity, has not previously been
studied.

• Exact and approximate solution for the homogeneous
case: We study and optimize a homogeneous system
model where all sensors have the same sensing preci-
sion and probability of connectivity to the FC. For this
case, the expected loss can be computed and minimized
exactly. Additionally, we approximate the expected loss
at the FC for this model when the number of sensors is
large and discuss the resulting insights.

• Approximate solution for the heterogeneous case: In
practical scenarios, sensing quality and connectivity to
the FC for different sensors can differ, as well as the
number of sensors in different clusters. For these cases
the exact error probability computation is intractable. We
propose an approximate solution for computing the false
alarm and missed detection probabilities that factors in
the randomly failed connections to the FC. Additionally,
we use an iterative Gauss-Seidel method and a line search
to optimize the cluster-level decision with the aim of
minimizing the expected loss at the FC.

• Numerical results to support our analysis: We present
numerical results that support the theory developed in
this paper. Interestingly, these results show that clustering
sensors creates a fundamental trade-off. On the one hand,
clustering the sensors creates a lossy compression at the
cluster level, and thus can increase the expected loss at
the FC. On the other hand, the sensor’s clustering can de-
crease the false alarm and missed detection probabilities
and the resulting expected loss at the FC since it increases
the number of sensors that take part in the FC’s decision
when connectivity to the FC is poor.

B. Related Work

There has been much work in the area of determining
analytical rules for event detection in clustered sensor net-
works. In particular, the works [14]–[23] consider clustered
sensor networks as a network organization scheme to reduce
the communication overhead to the FC. Sensor networks are
often characterized by extreme power and communication
constraints and thus the objective in decentralized detection for
these systems is to perform well, in their ability to detect an
event, while transmitting the smallest number of bits possible.
While these works make a significant contribution to our
understanding of the clustered sensor networks, they do not
consider the sporadic nature of the intermittent connectivity
of multi-sensor systems. This aspect of the problem is very
important, for example, in mmWave communication systems
[2]–[4], [8] that are vulnerable to temporary blockages, also
known as outages. When a channel is blocked, no information
can be passed through it, as its capacity is zero. These
blockages occur with positive and non-negligible probability
when the distance between a transmitter and receiver is greater
than 150m, as is modeled in [5]–[7]. Furthermore, they become
more frequent as the distance between the transmitter and
receiver grows. Connectivity is also a common problem in
mobile robotic systems (see [9]–[12]), where robot location
affects both the robot connectivity to the FC, and its event-
detection probability. To the best of our knowledge, minimiz-
ing the expected loss function of cloud-cluster sensor networks
where sensors are intermittently connected to the cloud was
not previously investigated. In this work we show that, using
recently improved concentration inequalities, we can approx-
imate the expected loss function caused by detection errors.
We note that like prior works [14]–[16], [18]–[22], we do not
address the problem of optimizing sensor placement, or how
to cluster existing sensors, but rather analyze the performance
of existing system architectures.

Another related body of works analyzes the effect of the
communication channel on the detection performance [24]–
[28]. These works study the effect of the quality of the commu-
nication channel, available side information and transmission
power constraints on the distortion of the signals that are
sent to the FC by the sensors. Our work considers a starkly
different setup where channels from sensors to the FC may be
blocked, thereby causing intermittent connectivity. In this case,
no information can be received by the FC from sensors with
blocked channels. Our system architecture aims at improving
connectivity to the FC using sensor clustering with optimized
decision rules.

Paper Organization: The rest of the paper is organized
as follows: Section II presents the system model and problem
formulation. Section III analyzes the optimal cloud-cluster
decision rules. Sections IV and V include approximations to
the optimal decision rules when they are intractable. In par-
ticular Section IV presents system analysis and optimization
for a homogeneous system setup, whereas Section V includes
tractable analysis and decision rules for heterogeneous setups.
Section VI presents numerical results. Finally, Section VII
concludes the paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model this work studies
and the technical details of the associated system optimization
problem.

A. System Model

Denote [1 : N ] ≜ {1, . . . , N}. We consider a set of
sensors indexed by i, i ∈ [1 : N ], that are deployed to sense
the environment and determine if the event of interest has
occurred. We assume that the sensors are noisy and their ability
to detect the event is captured for sensor i, by the probabilities
PMD,si of missed detection and PFA,si of false alarm. Suppose
that there are two hypotheses H0 and H1, the first occurs
with probability P0 = 1−P1 and the second with probability
P1. We denote the random variable that symbolizes the correct
hypothesis by Ξ, where Ξ ∈ {0, 1}. We assume for each sensor
i that the measured bit yi may be swapped with the following
probabilities

PFA,si ≜ Pr(yi = 1|Ξ = 0),

PMD,si ≜ Pr(yi = 0|Ξ = 1),

where PFA,si , PMD,si ∈ (0, 0.5) without loss of generality.
We allow for heterogeneity in each sensor’s ability to de-
tect the event of interest. In practice these can arise due
to characteristics such as the quality of their sensors and
their proximity to the measured event. The sensors have
intermittent connectivity to a centralized cloud server, or FC.
This intermittent connectivity is modeled by a binary random
variable ti that is equal to 1 if sensor si can communicate
with the FC and 0 otherwise. We denote by pcom,si the
probability that sensor si can communicate with the cloud
(or FC), that is, pcom,si = Pr(ti = 1). Upon obtaining a
communication link to the cloud server, a communicating
sensor will transmit information to the FC. The FC gathers
the information it receives from the communicating sensors,
and aims at estimating the correct hypothesis by minimizing
the following expected loss function:

E(L) ≜ Pr(Ξ = 0)PFAL10 + Pr(Ξ = 1)PMDL01, (1)

where L10 is the loss caused by false alarm, L01 is the loss
caused by missed detection. Additionally, PFA and PMD are the
false alarm and missed detection probabilities resulting from
the FC detection decision, respectively. Next, we present the
three system communication architectures we consider in this
work.

B. System Communication Architecture

We consider three system communication architectures,
namely, the cloud architecture, the cluster architecture and
cloud-cluster hybrid architecture that generalizes the two
aforementioned models. Next, we define each of these archi-
tectures.

Definition 1 (Cloud Architecture). In a cloud architecture,
see Fig. 1, all the sensors transmit their sensor data, yi, to
the cloud whenever a communication opportunity to the cloud
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Fig. 1: Sensor network with cloud architecture.

exists. Connectivity to the cloud is provided as a probability
pcom,si . The favorable case that pcom,si = 1 for all i is
equivalent to the classical centralized case since here all
sensors have constant access to the cloud which in turn has
access to all sensed measurements for event detection.

In the case of constant sensor connectivity to the FC the
cloud architecture minimizes the expected loss at the FC.
However, in many realistic scenarios the FC suffers from loss
of connectivity to many sensors when connectivity is low. This
drastically increases the detection error probabilities and the
resulting expected loss at the FC. We propose an alternative
approach aiming to improve network connectivity to the FC
when sensor’s connectivity to the FC is poor to minimize the
expected loss at the FC.

We study a different communication architecture where the
sensors in the system are clustered into teams, and the sensors
in each of these teams communicate with one another to arrive
at a joint decision. This decision is then forwarded to the FC
by a member of the cluster that can communicate with the FC.
In this way, a cluster’s decision can be forwarded to the FC if
at least one sensor in the cluster can communicate with the FC.
Upon receiving the processed measurement from the clusters,
the FC estimates the correct hypothesis by minimizing (1) over
all sensor clusters. We call this hybrid design of the sensor
communication architecture a cloud-cluster architecture.

Definition 2 (Cluster Architecture). In a cluster architecture,
depicted in Fig. 2, all sensors have a fully connected local
network and form a cluster where data is fused at a local
level before being transmitted to the cloud. Connectivity to
the cloud exists if any sensor si can communicate with the
cloud. In this case, the fused sensor data is transmitted to the
cloud by the sensor si.

Definition 3 (Cloud-cluster Architecture). The cloud-cluster
architecture, depicted in Fig. 3, is a hybrid between a cloud
and a cluster architecture where sensors are divided into
several clusters. It is assumed that sensors within a cluster are
fully connected and can communicate locally. The number of
clusters in the system can range from 1 (cluster architecture) to
N (cloud architecture) and is often determined by the problem
settings, i.e. sensors operating in the same room of a building
would constitute a cluster. Sensed data by sensors operating
in a cluster is fused at a local level before being transmitted
to the cloud. Connectivity to the cloud exists for each cluster
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Fig. 2: Sensor network with cluster architecture.
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Fig. 3: Sensor network with cloud-cluster architecture.

if there is a sensor in the cluster that can communicate with
the cloud. In this case the fused sensor data for that cluster
is transmitted to the cloud.

Intra-cluster Connectivity: We note that this work fo-
cuses on sensor’s intermittent connectivity to the FC and
ignores intermittent communication links within a cluster. In
practice, the communication requirements within a cluster are
much less restrictive. In fact, there is no need for all the
sensors in a cluster to be directly connected to one another,
or with a designated head sensor. Instead, it is sufficient to
have a path of connected sensors between any two sensors
in the cluster. This occurs in a mmWave channel if every
two consecutive sensors in the path are within a distance
of 150m of each other (see [4]). Furthermore, even when
communication between neighboring sensors in the path is
intermittent, the work [4] establishes that the blockage proba-
bility of the mmWave channel connecting them is considerably
lower than their blockage probabilities to the faraway FC.
Thus, for simplicity of exposition, this work focuses on the
failing links between sensors and the FC.

Carrying Out Cluster Decisions: Our cloud-cluster
model is not limited to a specific decision making procedure
within a cluster. For example, the cluster’s decision rule can be
performed by choosing a designating cluster head to make a
decision, this cluster head need not be fixed and can be chosen
to maximize sensors’ battery life [29], [30]. The designated
cluster head can forward the cluster’s decision directly to the
FC if it has a communication opportunity to it, or relay it to

sensors in the cluster with a communication opportunity to the
FC. Alternatively, the cluster’s decision rule can be performed
distributively. We note that as the number of sensors in a
cluster grows, the latency of these procedures grows as well.
Thus, in practical systems, the number of sensors in a cluster
will be affected by the latency values that can be tolerated.

We aim at analytically studying the performance of each
model as a function of probability of connectivity to the
cloud pcom,si , and sensor noise which is captured by the
probabilities PFA,si , PMD,si . Since the cloud architecture and
the cluster architecture are special cases of the cloud-cluster
architecture, our analysis is presented for the case of a cloud-
cluster architecture.

C. The Intermittently Connected Cloud-Cluster Problem For-
mulation

We consider a hybrid cloud-cluster system comprising of
Nc clusters, denoted by C1, . . . , CNc

.

Definition 4 (Cluster connectivity). A cluster Cj communi-
cates with the FC if at least one of the sensors within the
cluster can communicate with the FC.

Let τj be a binary random variable that is equal to one if
cluster Cj is communicating with the FC and zero otherwise
and denote τ = (τ1, . . . , τNc

).
Every sensor cluster Cj communicating with the cloud sends

a pre-processed value zj that captures the observations of all
sensors in cluster j. If cluster Cj cannot communicate with the
FC zj will take an arbitrary predefined deterministic value.
We denote the vector of the pre-processed values by z =
(z1, . . . , zNc

). The FC at the cloud determines its final decision
of whether an event has occurred or not by using the optimal
decision rule to minimize (1). It follows from [31, Chapter 3]
that this optimal decision rule chooses hypothesis H1 if:

Pr(z|H1, τ )

Pr(z|H0, τ )
≥ L10P0

L01P1
(2)

and H0 otherwise.
We investigate the following questions:

1) how the data z is pre-processed at the cluster layer to
reduce the expected loss at the FC,

2) how the estimates of missed detection and false alarm
probabilities are impacted by the system architecture, i.e.,
the number of clusters and the number of sensors per
cluster,

3) how intermittent communication with the cloud impacts
the performance at the FC which is captured by its
expected loss function.

III. SYSTEM ANALYSIS AND OPTIMIZATION

In this section, we optimize the decision at the cluster level
and the FC. Additionally, we obtain the expected number of
clusters that can communicate with the FC under the cloud-
cluster architecture.
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A. Cloud-Cluster Communication

Our cloud-cluster architecture is aimed at improving con-
nectivity to FC when the probabilities pcom,si are small, and
reducing scheduling and communication overheads when the
probabilities pcom,si approach 1. We assume that the sensors
are clustered into Nc groups. As stated in Definition 4, a
cluster of sensors communicates with the FC if one of the sen-
sors comprising the cluster sees a communication opportunity
to the FC. Each cluster estimates the hypothesis and sends
its estimation to the FC provided there is a communication
opportunity to the FC.

B. Communication probability of clusters and the expected
number of communicating clusters

By Definition 4, the probability that the cluster Cj can
communicate with the FC, i.e., τj = 1, is:

pcom,Cj
≜ 1−

∏
i:si∈Cj

(1− pcom,si). (3)

Let nCj
be the number of sensors in cluster Cj . We can see

that as we increase the number of sensors to the clusters,
pcom,Cj

increases. Therefore, pcom,Cj
is maximized in the

cluster architecture where nCj
= N . On the other hand,

pcom,Cj is minimized in the cloud architecture where nCj = 1.
Additionally, as we increase the probability that a sensor
can communicate with the FC, pcom,Cj

is increased. Denote
(xj)

N
j=1 ≜ (x1, . . . , xN ). From (3) we can calculate the

following expected number of communicating clusters:

η
(
Nc, (Cj)Nc

j=1, (pcom,si)
N
i=1

)
≜ Nc −

Nc∑
j=1

∏
i:si∈Cj

(1− pcom,si).

(4)

The optimization of the term (4) is beyond the scope of this
paper since we assume a given clustering. Nonetheless, a
closer look at the term (4) provides the following key obser-
vations. First, the expected number of communicating clusters
is affected by three factors, namely, the number of clusters,
the number of sensors in each cluster and the probability of
connectivity to the FC. Second, the function η is monotonically
increasing with pcom,si . However, the relationship between
Nc, |Cj | and η given a fixed number of sensors N is more
intriguing. Considering, for example, the homogeneous case
where |Cj | = N/Nc and pcom,si = pcom,s we have that:

η = Nc ·
(
1− (1− pcom,s)

N/Nc

)
Therefore, for small values of pcom,s decreasing the number of
clusters Nc increases η instead of decreasing it; this behavior
is observed until the probability (1 − pcom,s)

N/Nc becomes
sufficiently small. When pcom,s is large, decreasing the number
of clusters Nc decreases η; in this scenario clustering reduces
the scheduling overhead at the FC.

C. Decisions in Clusters

While the objective in the FC is to minimize (1) directly,
the objective in the cluster level is to find the optimal trade-off

between the probabilities of false alarm and missed detection.
That is, the minimum probability of missed-detection that can
be obtained for each value of the false alarm probability. By
the Neyman-Pearson Lemma [31, Chapter 3] the optimal trade-
off can be found by using the following likelihood ratio test
with a desired threshold γj :

Pr
(
(yi)i:si∈Cj

|H1

)
Pr
(
(yi)i:si∈Cj |H0

) H1

≷
H0

γj . (5)

In case of equality a random decision is made where hypothe-
sis H1 is chosen with probability pj and hypothesis H0 is
chosen with probability 1 − pj , where pj is an additional
parameter to be optimized. Let

w1,si ≜ ln

(
1− PMD,si

PFA,si

)
,

w0,si ≜ ln

(
1− PFA,si

PMD,si

)
, (6)

and
ỹi ≜ w1,siyi − w0,si(1− yi).

We can rewrite the likelihood ratio test (5) for decision in
cluster Cj as follows: ∑

i:si∈Cj

ỹi
H1

≷
H0

γj . (7)

In case of equality a random decision is made where hypoth-
esis H1 is chosen with probability pj and hypothesis H0 is
chosen with probability 1− pj .

Denote,

PFA,Cj
≜ Pr(zj = 1|H0), and PMD,Cj

≜ Pr(zj = 0|H1).

Then, the choice of threshold γj and tiebreak probability pj
results in the following detection error probabilities:

PFA,Cj
= Pr

 ∑
i:si∈Cj

ỹi > γj |H0


+ pj Pr

 ∑
i:si∈Cj

ỹi = γj |H0

 ,

PMD,Cj = Pr

 ∑
i:si∈Cj

ỹi < γj |H1


+ (1− pj) Pr

 ∑
i:si∈Cj

ỹi = γj |H1

 . (8)

Generally, as we discuss in Section III-E, the calculation of the
probabilities PFA,Cj

and PMD,Cj
is intractable except for special

cases such as the homogeneous case analyzed in Section IV.
Therefore, our calculations for the general case, presented in
Section V, rely on concentration inequalities to approximate
PFA,Cj

and PMD,Cj
.

The threshold γj and the probability pj are parameters that
we aim at optimizing to reduce the expected loss at the FC
for a given system architecture. Denote

ℓmin,j ≜ −
∑

i:si∈Cj

w0,si , ℓmax,j ≜
∑

i:si∈Cj

w1,si . (9)
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The threshold γj can be optimized by searching over the
interval Lj = [ℓmin,j , ℓmax,j ] to minimize (1). Additionally,
the probability pj can be optimized by searching over the
interval [0, 1]. We note that the thresholds γj and probabilities
pj that dictate the clusters’ decisions do not depend on the set
of clusters whose measurements are successfully received and
fused at the FC, using the decision rule (2). This choice obvi-
ates the need to optimize the thresholds γj and the probabilities
pj for all the possible 2Nc combinations of communicating
clusters. It also reduces the communication overhead that is
caused by detecting the set of clusters that can communicate
with the FC and sending this information back to the clusters
for the correct choice of the γj and pj every time the FC
makes a detection decision.

D. FC Final Decision

Suppose that the cluster Cj is communicating with the FC
and denote the data it sends to the FC by zi. The optimal
decision rule that minimizes (1) is choosing hypothesis H1

whenever (2) holds and hypothesis H0 otherwise. Let

w1,Cj ≜ ln

(
1− PMD,Cj

PFA,Cj

)
, w0,Cj

≜ ln

(
1− PFA,Cj

PMD,Cj

)
.

(10)

The rule (2) can be written as:

Nc∑
j=1

τj
[
w1,Cj

zj − w0,Cj
(1− zj)

]
≥ ln

(
L10P0

L01P1

)
≜ γ.

Note that in the case of equality, the expected loss due to
detection error is equal for both the false alarm and missed-
detection errors. Thus, in the case of equality we may choose
hypothesis H1 arbitrarily since both hypotheses lead to the
same loss.

Thus, the sensing quality at the FC for a particular realiza-
tion of the identity of communicating clusters can be written
as

PFA(τ ) = Pr

 Nc∑
j=1

τj
[
w1,Cj

zj − w0,Cj
(1− zj)

]
≥ γ|H0, τ

 ,

PMD(τ ) = Pr

 Nc∑
j=1

τj
[
w1,Cj

zj − w0,Cj
(1− zj)

]
< γ|H1, τ

 .

The probability of that particular realization of the identity
of communicating clusters is

P (τ ) =

Nc∏
j=1

p
τj
com,Cj

(1− pcom,Cj
)1−τj . (11)

This results in the following sensing probabilities

PFA = Pr

 Nc∑
j=1

τj
[
w1,Cjzj − w0,Cj (1− zj)

]
≥ γ|H0


=

∑
τ∈{0,1}N

P (τ )PFA(τ ),

PMD = Pr

 Nc∑
j=1

τj
[
w1,Cj

zj − w0,Cj
(1− zj)

]
< γ|H1


=

∑
τ∈{0,1}N

P (τ )PMD(τ ). (12)

E. The Threshold Optimization Problem

Recall that E(L) = Pr(Ξ = 0)PFAL10 + Pr(Ξ =
1)PMDL01 and that PFA and PMD are defined as (12). Then, the
global optimization problem resulting from the cloud-cluster
architecture is:

min
{pj}Nc

j=1,{γj}Nc
j=1

E(L). (13)

The complexity of calculating the optimal values pj , γj is
high for the following reasons: first, the function E(L) is not
necessarily convex, thus the complexity can be exponential in
the number of variables, i.e., exponential in 2Nc. Additionally,
currently no close form method is known to calculate (8)
and (12) efficiently since the coefficient are heterogeneous
irrational numbers. We refer the reader to [32] for the case
were the coefficients are rational numbers, additionally, the
case of homogeneous coefficients is tractable as well. It
follows that the overall complexity of optimizing E(L) can
be exponential in 2Nc + max{maxj{|Cj |}, Nc}, where the
last term in the addition follows from the calculation of (8)
and (12).

IV. DECISION OPTIMIZATION IN HOMOGENEOUS
SYSTEMS WITH EQUAL THRESHOLDS

We consider a special case of our system model that is ho-
mogeneous, i.e., all the clusters comprises an equal number of
homogeneous sensors where PFA,si = PFA,s, PMD,si = PMD,s,
Pcom,si = Pcom,s, ∀ i ∈ [1 : N ]. In this case, w1,si = w1,s and
w0,si = w0,s for all i ∈ [1 : N ]. For this setup, we consider
equal thresholds γj and probabilities pj of the clusters, i.e.,
γj = γ̃C and pj = pC , ∀ i ∈ [1 : N ]. This leads to the
tractability of Algo. 1, at the expense of its optimality.

A. Exact Optimization of the Expected Loss Function

Recall that PFA,si , PMD,si ∈ (0, 0.5), therefore, w0,s > 0
and w1,s > 0, and denote

w1,s ≜ ln

(
1− PMD,s

PFA,s

)
, w0,s ≜ ln

(
1− PFA,s

PMD,s

)
,

γC ≜
γ̃C + |C| · w0,s

w1,s + w0,s
.

Under the assumptions of a homogeneous system and equal
thresholds, we can rewrite (8) as

PFA,Cj
= Pr

( ∑
i:si∈Cj

yi > γC |H0

)

+ pC Pr

( ∑
i:si∈Cj

yi = γC |H0

)
,
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PMD,Cj
= Pr

( ∑
i:si∈Cj

yi < γC |H1

)

+ (1− pC) Pr

( ∑
i:si∈Cj

yi = γC |H1

)
. (14)

We can calculate the terms in (14) efficiently for each γC since
the term

∑
i:si∈Cj

yi is distributed according to a binomial
distribution for all j ∈ [1 : Nc].

The equal decision rules in the clusters create homogeneous
clusters, i.e., PFA,Cj = PFA,C and PMD,Cj = PMD,C for all
j ∈ [1 : Nc]. Hereafter, for simplicity of exposition, we assume
in this section that PFA,C , PMD,C < 1

2 . Our results can be easily
extended to the general case. Denote

w1,C ≜ ln

(
1− PMD,C

PFA,C

)
, w0,C ≜ ln

(
1− PFA,C

PMD,C

)
,

γh(k) ≜ max

{
0,

γ + k · w0,C

w1,C + w0,C

}
.

Let 1 denote the N-dimensional row vector with all entries
equal to 1. Then, PFA(τ 1) = PFA(τ 2) and PMD(τ 1) =
PMD(τ 2) for all τ 1, τ 2 ∈ {0, 1}Nc such that τ 11

T = τ 21
T

where (·)T denotes the transpose operator. Additionally, de-
note

PFA,k ≜ Pr

(
k∑

j=1

zi ≥ γh(k)|H0, τ1
T = k

)
,

PMD,k ≜ Pr

(
k∑

j=1

zi < γh(k)|H1, τ1
T = k

)
.

Due to the homogeneity of the setup, the identity of the
communicating clusters does not affect the probabilities PFA,k

and PMD,k. Furthermore, by the homogeneity of the clusters,
we have that

Pcom,Cj = Pcom,C = 1− (1− Pcom,s)
N/Nc , (15)

for all j ∈ [1 : Nc]. Now, by (12) for each pair (pC , γC) we
have that

PFA =

Nc∑
k=0

Pr
(
τ1T = k

)
PFA,k,

PMD =

Nc∑
k=0

Pr
(
τ1T = k

)
PMD,k, (16)

where τ1T is a binomial random variable with Nc experi-
ments, each with probability of success pcom,C . Therefore, the
problem (13) can be upper bounded by

min
pC,γC

E(L), (17)

under the homogeneity assumptions included in this section.
Recall that in a homogeneous setup all the clusters include

an equal number of sensors. Therefore, the number of sen-
sors in each cluster is |C| = N/Nc. Algo. 1 depicts the
resulting algorithm. It can be implemented with complexity
of O

(
rp

N
Nc

max{ N
Nc

ln2(N/Nc), 1} ·max{N2
c ln2(Nc), 1}

)
,

see [33] for efficient computation of the binomial tail distribu-
tion. It follows from (14) that the optimal value of γC , under

Algorithm 1 Optimization for homogeneous setup and equal
cluster thresholds setup

1: Input: A set of Nc homogeneous clusters C1, . . . , CNc ,
each comprises |C| = N/Nc homogeneous sensors;

2: Input: rp ∈ N+

3: Set PFA,si = PFA,s, PMD,si = PMD,s, Pcom,si = Pcom,s for
all i ∈ [1 : N ];

4: Set dp = 1/rp;
5: Set ΓC = {0, 1, . . . , N/Nc} and set Γp =

{0, dp, 2dp, . . . , 1};
6: Set PFA,C and PMD,C as (14).
7: Solve (pC , γC) = argminpC∈Γp ,γC∈ΓC E(L);
8: Set pj = pC and γj = γC · (w1,s + w0,s) − |C| · w0,s for

all j ∈ [1 : Nc];

the homogeneity assumptions, is in the set {0, 1, . . . , N/Nc}.
Additionally, we perform a line search in the interval [0, 1] to
optimize the probability pC .

B. Comparison of the Expected Loss for the Different Archi-
tectures

The purpose of this section is to compare the minimal
expected loss achievable by the different communication
architectures, namely, the cloud-cluster, cloud, and cluster
architectures. We express the expected loss at the FC of each of
these architectures as a function of the sensor’s probability of
communicating with the FC, which is a principle consideration
of this paper. We start with the first case of the cloud-cluster
architecture. Motivated by [17]–[19], we consider the case
where Nc, N ≫ 1. Additionally, for the sake of simplicity
of exposition we assume that γ ≥ 0 and γ(k)/k ∈ (PFA,s, 1−
PMD,s), ∀k ≥ 1. Let D(p ∥ q) ≜ p ln(pq ) + (1 − p) ln(1−p

1−q ),
denote the Kullback–Leibler (KL) divergence. Recall that
PFA,s, PMD,s < 1

2 . Then, by the Chernoff bound (see [34])
and Stirling’s formula (see [35, p.115]) we have that for every
δC ≜ γC · Nc

N ∈ [PFA,s, (1− PMD,s)],

1√
2N/Nc

e−
N
Nc

D(δC∥PFA,s) ≤ PFA,C ≤ e−
N
Nc

D(δC∥PFA,s),

1√
2N/Nc

e−
N
Nc

D(δC∥1−PMD,s) ≤ PMD,C ≤ e−
N
Nc

D(δC∥1−PMD,s).

(18)

With a slight abuse of notations, we treat δC as a real number
when upper bounding the error probabilities since it can get
arbitrarily close to any real number as N/Nc increases. A
similar argument holds for the parameter β which we define
next.

Let β ≥ (1− Pcom,s)
N/Nc , then the probability that more

βNc clusters fail to communicate with the FC is bounded as
follows

1√
2Nc

e
−NcD

(
β∥(1−Pcom,s)

N
Nc

)
≤ Pr

(
τ1T ≤ (1− β)Nc

)
≤ e

−NcD

(
β∥(1−Pcom,s)

N
Nc

)
.

(21)
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Ecloud-cluster(L) ≤ inf
β∈

(
(1−Pcom,s)

N
Nc ,1

)
{
EM · Pr

(
τ1T ≤ (1− β)Nc

)
+
(
1− Pr

(
τ1T ≤ (1− β)Nc

))
·

min
δC∈[PFA,s,(1−PMD,s)]

max
k≥(1−β)Nc

{
(P0L10PFA,k + P1L01PMD,k

}}

≤ inf
β∈

(
(1−Pcom,s)

N
Nc ,1

)
{
EM · e−NcD(β∥(1−Pcom,s)

N/Nc) +

(
1− 1√

2Nc

e−NcD(β∥(1−Pcom,s)
N/Nc)

)
·

inf
δC∈(PFA,s,1−PMD,s):

γh((1−β)Nc)

(1−β)Nc
,
γh(Nc)

Nc
∈Γh

{
P0L10e

−(1−β)Nc·D
(

γh(Nc)

Nc
∥PFA,C

)
+ P1L01e

−(1−β)Nc·D
(

γh((1−β)Nc)

(1−β)Nc
∥1−PMD,C

)}}
.

(19)

Ecloud(L) ≥ sup
β∈(0,1−Pcom,s)

{
(
1− e−N ·D(β∥1−Pcom,s)

)
· 1√

2N(1− β)

[
P0L10e

−(1−β)N ·D(γh(1)∥PFA,s) + P1L01e
−(1−β)N ·D

(
γh((1−β)N)

(1−β)N
∥1−PMD,s

)]
+

1

2N
e−N ·D(β∥1−Pcom,s)

[
P0L10e

−N ·D
(

γh((1−β)N)

(1−β)N
∥PFA,s

)
+ P1L01e

−N ·D
(

γh(N)

N ∥1−PMD,s

)]}
. (20)

Denote EM ≜ min{P0L10, P1L01}, which is the minimal ex-
pected loss at the FC when no observations are available. Uti-
lizing the union bound results in the upper bound (19) for the
expected loss function at the FC for Γh ≜ (PFA,C , 1− PMD,C).

Finally, we can plug-in the approximation (18) in (19) to
have a complete characterization on the trade-off between the
parameters of the problem, namely the number of sensors
N , the number of clusters Nc, the probability of a sensor’s
successful transmission to the FC Pcom,s and its false alarm
and missed detection probabilities, i.e., PFA,s and PMD,s,
respectively. We can observe from (19) that for given N
and Nc when Pcom,s ↓ 0, i.e., links to the FC are very
likely to disconnect, β ↑ 1 and D

(
β ∥ (1− Pcom,s)

N
Nc

)
↓ 0.

Additionally (1 − β)Nc ↓ 0, therefore, we must decrease the
number of clusters Nc to decrease (19). Next, we consider
how the number of clusters Nc affects (19) for a given Pcom,s.
First, we observe that decreasing Nc also decreases (18).
Nonetheless, the same claim is not necessarily true for (19).
Let us decrease Nc, then the probability of link failure from a
cluster to the cloud, i.e., (1− Pcom,s)

N/Nc , decreases as well.
However, the exponents in (19) also depend directly on the
Nc term that appears before the KL-divergence terms. Thus,
in some cases, decreasing the number of clusters Nc may result
in increasing (19) if the probability of cluster disconnection
from the FC, which is captured by (1− Pcom,s)

N/Nc , and the
precision of the decision at the cluster level, which is captured
by (18) and is affected by 1 − PFA,s and 1 − PMD,s, are
not sufficiently increased with the decreasing of Nc. Section
VI which presents numerical results, include cases where
decreasing Nc results in increasing the expected loss.

To compare the performance of the cloud architecture, see
Fig. 1, and the cloud-cluster architecture, next we present a

lower bound in the spirit of (19) for the expected loss function
of the cloud architecture, note that a similar upper bound can
be directly derived from (19) for Nc = 1. Assuming that
N ≫ 1 we observe that the events {τ1T ≤ (1 − β)Nc}
and {τ1T > (1 − β)Nc} are mutually exclusive with
Pr
(
τ1T ≤ (1− β)Nc

)
= 1−Pr

(
τ1T > (1− β)Nc

)
. Thus,

we can derive the lower bound (20).
Following the discussion above, we observe that when

the transmission probability Pcom,s is small, the cloud-cluster
architecture outperforms the cloud architecture. A special case
that demonstrates the effectiveness of the cloud-cluster archi-
tecture is when Pcom,s ∝ 1

N . In this case (1− β) ·N = O(1)
when β = 1− 2Pcom,s as well as the expected loss Ecloud(L).
This observation is of special interest in light of the works
[17]–[19] which establish that when connectivity to the FC is
perfect, clustering cannot reduce the expected loss function.

We conclude this discussion by lower bounding in (22) the
expected loss function of the cluster architecture, depicted in
Fig. 2. A similar upper bound which excludes the factor 1√

2N
in (22) can be easily derived.

Ecluster(L) ≥ EM (1− Pcom,s)
N
+

1− (1− Pcom,s)
N

√
2N

·[
P0L10e

−N ·D
(

γh((1−β)N)

(1−β)N
∥PFA,s

)
+ P1L01e

−N ·D
(

γh(N)

N ∥1−PMD,s

)]
.

(22)

The probability that the FC does not receive transmissions
from any of the clusters is (1− Pcom,s)

N . Since this probabil-
ity does not depend on the number of clusters, the expected
loss function E(L) is minimized by the cluster architecture.
Nonetheless, the cluster architecture cannot be used when the
number of sensors is large due to the high latency it incurs.
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Remark. The upper bound (19) is established by utilizing the
union bound on the number of clusters that can communicate
with the FC, and observing that due to the homogeneity
assumption the identities of the communicating clusters do
not affect (19). Therefore, this approach cannot be used in
a heterogeneous setup, instead, in the following section, we
develop an alternative large deviation approach that ties
together a cluster’s communication probability to the FC and
its false alarm and missed detection probability.

V. TRACTABLE DECISION OPTIMIZATION IN
HETEROGENEOUS SYSTEMS

This section optimizes the decision thresholds for het-
erogeneous systems at the cluster level using the Gauss-
Seidel iterative method1 which iteratively reduces the expected
loss function at the FC. In the case that the terms (8) and
(12) are intractable we approximate them via concentration
inequalities. Algo. 2 depicts the optimization scheme we
develop in this section. Additionally, we propose several initial
values for Algo. 2 that we compare numerically in Section
VI. We note that for the sake of clarity of presentation we
present proofs and analytical analysis in Appendices A-C.
Additionally, since Algo. 2 does not minimize the expected
loss exactly it may lead to suboptimal solutions. Finally,
hereafter we denote {xj}Nj=1 ≜ {x1, . . . , xN}. Finally, let IW
be the number of iterations that are used in calculating the
Lambert W function [36]. Then, Algo. 2 is of complexity
O(T · rγ ·max{rp2ms , IW + N

Nc
} ·max{2mC , IW +Nc}).

A. From grid search to line search

We overcome the non-convexity of the objective function of
(13) with respect to γj and pj by optimizing these variables
using a combination of the Gauss-Seidel iterative method with
a line search at each iteration. Starting from chosen initial
values for γj and pj , this method optimizes the thresholds
iteratively until convergence, one cluster at a time, while
fixing the decision thresholds of all the other clusters. At each
iteration a line search is performed over a predefined bounded
interval to minimize the overall expected loss. We propose
four different initial values for γj and pj in Section V-C.

B. Approximating (8) and (12) via concentration inequalities

Now, we explore optimizing the thresholds γj via concentra-
tion inequalities, specifically, the improved Bennet’s inequality
that is stated in Theorem 2, Appendix A. We note that it
is possible to approximate the detection error probability
using the normal approximation. However, it yields smaller
approximate probabilities than the true ones, which we want
to upper bound, when the false alarm and missed detection
probabilities are small. Therefore, it is not suitable to use in
the estimation of the loss function at the FC when the clusters
are large. Thus, for the clarity of presentation, we use the
improved Bennet’s inequality in our analysis, which upper
bounds the desired probability in all scenarios.

1The Gauss-Seidel iterative approach is considered in a relation to sensor
network optimization in [15].

Next, we present the following notations. Additionally, let
W (·) denote the Lambert W function. Denote

U(n, α,M, σ2) ≜

exp

[
−Λα

M
+ n ln

(
1 +

σ2

M2

(
eΛ − 1− Λ

))]
, (23)

where

A ≜
M2

σ2
+

nM

α
− 1,

B ≜
nM

α
− 1,

Λ ≜ A−W (BeA). (24)

We separate the concentration inequalities analysis into two
scenarios, both of which are intractable on their own.

1) Large number of sensors in cluster j (nCj ≫ 1): In
this case we approximate the false alarm and missed detection
probabilities of the decision of cluster j by applying the
improved Bennet’s inequality as follows.

Proposition 1. Let

αFA,j = γj −
∑

i:si∈Cj

(PFA,siw1,si − (1− PFA,si)w0,si),

σ2
FA,j =

1

nCj

∑
i:si∈Cj

PFA,si(1− PFA,si)(w1,si + w0,si)
2,

and MFA,j = maxi:si∈Cj
{mFA,i} where mFA,i = (1 −

PFA,si)(w1,si + w0,si). Then,

PFA,Cj
≤ U

(
nCj

, αFA,j ,MFA,j , σ
2
FA,j

)
, (25)

for every γj such that 0 ≤ γj −
∑

i:si∈Cj
(PFA,siw1,si − (1−

PFA,si)w0,si) < nCj
·MFA,j .

Proposition 2. Denote

αMD,j =
∑

i:si∈Cj

((1− PMD,si)w1,si − PMD,siw0,si)− γj ,

σ2
MD,j =

1

nCj

∑
i:si∈Cj

PMD,si(1− PMD,si)(w1,si + w0,si)
2,

and MMD,j = maxi:si∈Cj
{mMD,i} where mMD,i = (1 −

PMD,si)(w1,si + w0,si). Then,

PMD,j ≤ U
(
nCj

, αMD,j ,MMD,j , σ
2
MD,j

)
, (26)

for every γj such that 0 ≤
∑

i:si∈Cj
((1 − PMD,si)w1,si −

PMD,siw0,si)− γj < nCj
MMD,j .

We prove Proposition 1 and Proposition 2 in Appendix B.
2) Large number of clusters (Nc ≫ 1): In this case we

approximate the false alarm and missed detection probabilities
of the decision of the FC by Propositions 3 and 4 that
are achieved by applying the improved Bennet’s inequality.
Interestingly, Propositions 3 and 4 establish concentration
inequalities that consider both the detection error of a cluster
and its probability of successful communication with the FC.

Proposition 3. Let

E0,j ≜ pcom,Cj

(
PFA,Cj

w1,Cj
− (1− PFA,Cj

)w0,Cj

)
,
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Algorithm 2 Optimization for heterogeneous setup
1: Input: A set of clusters of sensors C1, . . . , CNc ;
2: Inputs: {γ(0)

j }Nc
j=1, {p

(0)
j }Nc

j=1;
3: Inputs: {ℓmin,j}Nc

j=1, {ℓmax,j}Nc
j=1, and rγ , rp ∈ N+;

4: Inputs: δγ > 0, δp > 0, T > 0, ms > 0,mC > 0;
5: Set δ(0)γ = 2δγ , δ(0)p = 2δp, and ∆γj = 2δγ and ∆pj = 2δp for all j ∈ [1 : Nc];
6: Set dj = (ℓmax,j − ℓmin,j)/rγ for all j ∈ [1 : Nc] and set dp = 1/rp;
7: Set Γj = {ℓmin,j , ℓmin,j + dj , ℓmin,j + 2dj , . . . , ℓmax,j} and set Γp = {0, dp, 2dp, . . . , 1};
8: Set t = 0, j = 0,
9: while t < T do

10: while δ
(t)
γ > δγ or δ(t)p > δp do

11: Set t = t+ 1;
12: Set j = max{mod(j + 1, Nc), 1};
13: Set γk = γ

(t−1)
k and pk = p

(t−1)
k for all k ∈ [1 : Nc] such that k ̸= j;

14: if nCj > ms and Nc > mC then
15: Substitute PFA,Cj by its estimate U

(
nCj , αFA,j ,MFA,j , σ

2
FA,j

)
in the calculation of E(L).

16: Substitute PMD,Cj by its estimate U
(
nCj , αMD,j ,MMD,j , σ

2
MD,j

)
in the calculation of E(L).

17: Substitute PFA by its estimate U
(
Nc, αFA,MFA, σ

2
FA
)

in the calculation of E(L).
18: Substitute PMD,Cj by its estimate U

(
Nc, αMD,MMD, σ

2
MD

)
in the calculation of E(L).

19: Set p(t)j = 1 and γ
(t)
j = minγj∈Γj E(L), where E(L) is calculated by using the estimation for the terms PFA,Cj , PMD,Cj , PFA

and PMD in the calculation of E(L);
20: else if nCj ≤ ms and Nc > mC then
21: Substitute PFA by its estimate U

(
Nc, αFA,MFA, σ

2
FA
)

in the calculation of E(L).
22: Substitute PMD,Cj by its estimate U

(
Nc, αMD,MMD, σ

2
MD

)
in the calculation of E(L).

23: Set (γ(t)
j , p

(t)
j ) = minγj∈Γj ,pj∈Γp E(L), where E(L) is calculated by using the estimation for the terms PFA and PMD in

the calculation of E(L);
24: else if nCj > ms and Nc ≤ mC then
25: Substitute PFA,Cj by its estimate U

(
nCj , αFA,j ,MFA,j , σ

2
FA,j

)
in the calculation of E(L).

26: Substitute PMD,Cj by its estimate U
(
nCj , αMD,j ,MMD,j , σ

2
MD,j

)
in the calculation of E(L).

27: Set p(t)j = 1 and γ
(t)
j = minγj∈Γj E(L), where E(L) is calculated by using the estimation for the terms PFA,Cj and PMD,Cj

in the calculation of E(L);
28: else
29: Set (γ(t)

j , p
(t)
j ) = minγj∈Γj ,pj∈Γp E(L);

30: end if
31: Set ∆γj = |γ(t)

j − γ
(t−1)
j | and set δ(t)γ = max{∆γk}

Nc
k=1;

32: Set ∆pj = |p(t)j − p
(t−1)
j | and set δ(t)p = max{∆pk}

Nc
k=1;

33: end while
34: end while

and denote

αFA ≜ γ −
Nc∑
j=1

E0,j ,

σ2
FA ≜

1

Nc

Nc∑
j=1

[
pcom,Cj

(
PFA,Cj

w2
1,Cj

+ (1− PFA,Cj
)w2

0,Cj

)
− E2

0,j

]
,

and MFA = maxj∈[1:Nc]{mFA,j}, where mFA,j =
max{|w1,Cj

− E0,j |, |w0,Cj
+ E0,j |}. Then,

PFA ≤ U
(
Nc, αFA,MFA, σ

2
FA

)
, (27)

for every γ such that 0 ≤ γ −
∑Nc

j=1 E0,j < Nc ·MFA.

Proposition 4. Let

E1,j ≜ pcom,Cj

(
(1− PMD,Cj

)w1,Cj
− PMD,Cj

w0,Cj

)
,

and denote

αMD ≜
Nc∑
j=1

E1,j − γ,

σ2
MD ≜

1

Nc

Nc∑
j=1

[
pcom,Cj

(
(1− PMD,Cj )w

2
1,Cj

+ PMD,Cjw
2
0,Cj

)
− E2

1,j

]
and MMD = maxj∈[1:Nc]{mMD,j} where mMD,j =
max{|w1,Cj

− E1,j |, |w0,Cj
+ E1,j |}. Then,

PMD ≤ U
(
Nc, αMD,MMD, σ

2
MD

)
, (28)

for every γ such that 0 ≤
∑Nc

j=1 E1,j − γ < Nc ·MMD.

We prove Propositions 3 and 4 in Appendix C.

Remark. Propositions 1-4 capture the heterogeneity of the
model through the terms αFA,j , αMD,j , αFA and αMD, and the
variance terms σ2

FA,j , σ
2
MD,j , σ

2
FA and σ2

MD. Furthermore, the
network architecture is captured by the number of clusters
and the number of sensors at each cluster. Additionally, the
transmission probability of a cluster j clearly affects the
expectation terms E0,j , E1,j and the variance terms σ2

FA, and
σ2

MD that are used to upper bound the false alarm and missed
detection probabilities at the FC.
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Using Propositions 1-4 we can evaluate and minimize the
expected loss function to optimize the quality of detection even
when the exact calculations are intractable.

C. Initial Inputs to Algorithm 2

Since Algo. 2 uses the Gauss-Seidel iterative algo-
rithm it is required to provide it with the initial values
{γ(0)

j }Nc
j=1, {p

(0)
j }Nc

j=1. We consider the following four initial
values:

1) For each cluster Cj the choice of γ
(0)
j and p

(0)
j is found

using the equal threshold solution as in Algo. 1 under the
assumption that there are Nc clusters that are identical to
cluster Cj , i.e. they include the same number of sensors
as cluster Cj with the same probabilities of false alarm,
missed-detection and communication to the cloud as the
sensors in cluster Cj . The probabilities PFA,C and PMD,C
are calculated using the approximations we presented in
Section V-B if they are intractable.

2) Middle point of the intervals [ℓmin,j , ℓmax,j ] and [0, 1],
respectively. That is, γ(0)

j =
ℓmin,j+ℓmax,j

2 , and p
(0)
j = 0.5.

3) γ
(0)
j = ℓmin,j and p

(0)
j = 1, that is, PFA,Cj

= 1, and
PMD,Cj

= 0.
4) γ

(0)
j = ℓmax,j and p

(0)
j = 0, that is, PFA,Cj

= 0, and
PMD,Cj

= 1.

VI. NUMERICAL RESULTS

This section presents numerical results in which we evaluate
the performance of the proposed cloud-cluster architecture.
We consider a system with the following characteristics: 500
sensors, to evaluate both the actual and approximate perfor-
mance, p(Ξ = 1) = 0.65, L01 = 200 and L10 = 100. To
evaluate the performance of the proposed approach we com-
pare two systems: a homogeneous one in which pFA,si = 0.2,
pMD,si = 0.35 for all the sensors in the network, and a
heterogeneous system in which for each sensor i we have
that pFA,si ∼ U([0.16, 0.24]) and pMD,si ∼ U([0.28, 0.42]),
that is, both the false alarm and missed detection probabilities
of each sensor has a random deviation of 20% from their
values in the homogeneous system. In the heterogeneous
setup we average the expected loss of each realization of
the false alarm and missed detection probabilities over 250
realizations. Additionally, in each grid search that we perform
for optimizing γj we use 50 points per sensor, i.e., a total of
rγ = 50 × nCj

points. Finally, the line search resolution for
the variable pj is 0.01, that is, rp = 100.

First, we evaluate in Fig. 4 the communication probability of
a cluster to the cloud as a function of the number of sensors it
comprises for three values of individual sensor communication
probability, Pcom,si = 0.05, 0.25, 0.5. Fig. 4 validates that the
communication probability of a cluster grows monotonically
with the number of sensors it includes. Additionally, it shows
that for higher values of Pcom,si the increase in communication
probability occurs and saturates faster than for lower values
of Pcom,si .

Figs. 5-6 evaluate the approximate loss that each of the
initial inputs of Algo. 2 that we present in Section V-C
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Fig. 4: Communication probability to the cloud as a function of the
number of sensors it includes.

yields. Comparing the four initial thresholds for Algo. 2, we
can see that the first initial threshold that we propose in
Section V-C, which chooses for each cluster the threshold
that minimizes the expected loss function assuming identical
clusters, is consistently on-par or outperforms the other three
initial threshold values we propose in Section V-C.

To evaluate the exact performance achieved by thresholds
that are optimized using the approximations that we present in
Section V, we use a homogeneous setup with equal cluster size
as a tractable setup for which we can calculate the expected
loss exactly. We then compare the exact calculation to its
approximation that is calculated using Eqs. (25)-(28). In the
heterogeneous setup we choose the initial threshold γj for each
cluster Cj using the first initial threshold that we propose in
SectionV-C. In the homogeneous setup we optimize the system
by using Algo. 1. Additionally, in both the heterogeneous
setup and the approximate calculation in the homogeneous
setup we use the approximate probabilities to approximate
PFA,Cj and PMD,Cj presented in Section V-B if nCj > 20.
Additionally, we use the approximate missed detection and
false alarm probabilities to approximate PFA and PMD, i.e.,
the error probabilities at the FC, presented in Section V-B if
Nc > 10. Otherwise we use exact calculations.

Figs. 7-8 depict the expected loss as a function of the sensor
communication probability pcom,s for various values of Nc (the
number of clusters). Figs. 9-10 depict the expected loss as a
function of the number of clusters Nc that comprise the sys-
tem for various values of sensor communication probabilities
pcom,s. Each of the Figs. 7-10 includes five lines also denoted
in the legends. These are defined as:
Expected loss - exact calculation: the expected loss of the
homogeneous system using exact calculations in Algo. 1.
Expected loss - majority: the expected loss of the homoge-
neous system in which each cluster makes a majority rule
decision where γj = ⌊nCj

/2⌋ + 1. The expected loss is
calculated exactly.
Expected loss - γj calculated using approximation: the exact
expected loss that the choice γj yields, where γj is optimized
using the concentration inequalities depicted in Section V-B
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(a) A system with 20 clusters, each including 25 sensors.
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(b) A system with 100 clusters, each including 5 sensors.

Fig. 5: The expected loss as a function of the communication
probability of each sensor, for each of the initial thresholds presented
in Section V-C. The approximated expected loss values resulting
from the different initial thresholds are similar. Nevertheless, there
is a small but persistent advantage for the “optimal homogeneous”
initial threshold that minimizes the expected loss function assuming
identical clusters.

in Algo. 1 instead of the exact calculation of the loss function.
Approximate expected loss - homogeneous: the approximate
expected loss that is calculated using the concentration in-
equalities depicted in Section V-B in Algo. 1 instead of the
exact calculation of the loss function.
Approximate expected loss - heterogeneous: the approxi-
mate expected loss that is calculated using Algo. 2 with the
first initial threshold that is proposed in SectionV-C.

Figs. 7-8 show that when the number of clusters is large
(i.e., each cluster consists of a small number of sensors),
the improvement in the performance of a highly connected
system compared with that of a sparsely connected system
is much more significant than the contrasting scenario of a
system with a small number of clusters. Additionally, Figs. 7-
8 confirm that optimizing the thresholds γj using concentration
inequalities yield an actual expected loss that is on par with
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(a) A system with sensor communication probability pcom,si = 0.1.
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(b) A system with sensor communication probability pcom,si = 0.4.

Fig. 6: The expected loss as a function of the number of the
equal sized clusters, for each of the initial thresholds presented
in Section V-C. Similarly to Fig. 5 the “optimal homogeneous”
initial threshold which minimizes the expected loss function assuming
identical clusters consistently outperforms or is on-par with the other
candidates.

that of optimizing γj using exact calculations. Additionally,
Figs. 7-8 depict the gap between the approximate loss function
and the exact one for the homogeneous setup and show that
our use of the improved Bennet’s inequality results in a
good approximation for the expected loss function. Therefore,
while the heterogeneous setup is not tractable we can expect
that our use of the improved Bennet’s inequality results in
a good approximation for the expected loss function for the
heterogeneous setup as well. Finally, Figs. 7-8 shows the large
gain that optimizing the threshold values provides instead of
choosing a majority decision rule.

Figs. 9-10 show that when the communication probabilities
of sensors to the FC are low, as in Fig. 9, there is a monotonic
decrease in the loss function as we decrease the number of
clusters in the exact loss function. This is also observed for
the approximate loss function with the exception of a small
increase when the system is composed of 20 clusters; the small
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Fig. 7: The expected loss function of the communication probability
of each sensor for a system with 10 clusters, each including 50
sensors. For cloud-cluster architectures we attain a dramatic im-
provement in performance due to clustering if sensor communication
probability to the cloud is at least 0.15.
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Fig. 8: The expected loss function vs. the communication probability
of each sensor for a system with 50 clusters, each including 10 sen-
sors. For small size clusters, approaching a distributed architecture,
higher probability of communication to the cloud is required for better
performance.

increase in this case is an artifact resulting from being the first
point which approximates both the cluster level and the FC
error probabilities. When the communication probabilities of
sensors to the FC are higher, as in Fig. 10, clustering may
actually increase the expected loss. This follows because of
the single bit compression that occurs in the clusters’ single
bit decisions. Note that in this scenario the increase around
the point Nc = 20 is much sharper due to the increase in
the exact expected loss and utilizing approximates of both the
cluster level and the FC error probabilities. Fig. 10 exhibits
a trade-off between the error probabilities of the decisions in
clusters and that of the FC. Increasing the number of clusters
reduces the number of measurements that the clusters use
to make their decisions, and also reduces the communication
probability to the FC since clusters include fewer sensors and
thus reduced the chances of seeing an opportunity to access
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Fig. 9: The expected loss function of the number of equal size
clusters Nc for pcom,si = 0.1. Since connectivity to the FC is low,
reducing the number of clusters (more sensors per cluster) increases
the chances of communication to the cloud and improves the overall
performance.
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Fig. 10: The expected loss function of the number of equal Nc

size clusters for pcom,si = 0.5. When connectivity of sensors to the
cloud is high, smaller clusters are favored for improving multi-sensor
system performance since sensor fusion at the cluster level can be
thought of as a form of lossy compression.

the cloud. However, if the communication probability is high,
increasing the number of clusters can result in the FC having
more measurements to rely on upon making its final decision.

VII. CONCLUSION

We consider multi-sensor systems that operate in environ-
ments where cloud connectivity is available intermittently. We
provide an analytical study of the tradeoffs between different
information exchange architectures to support an event detec-
tion task. Our results show that if cloud connectivity is reliable,
directing sensors to share their sensed values to the cloud
for event detection at a centralized fusion center will always
perform best. However, in the more likely scenario where
cloud connectivity is intermittent, clustering sensors into local
neighborhoods where their sensed values are processed and
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then sent to the cloud during sporadic communication opportu-
nities performs best. In particular, our results give insight into
the optimal cluster sizes needed to achieve minimum detection
loss at the cloud even in the face of noisy sensor data and
intermittent communication. Future work can use the results
presented here to optimize the locations of sensors such that
they attain the recommended cluster sizes for best detection
performance over the environment.

APPENDIX A
PRIMER ON CONCENTRATION INEQUALITIES

This appendix provides a primer on key concentration
inequality results that we will use for the development of our
analysis. Since we consider a heterogeneous setup in which the
false alarm and missed detection probabilities may vary, we
cannot use the concentration inequality [34] for the binomial
distribution. Instead we use an improved Bennett’s inequality
which is known to outperform both Bernstein and Hoeffding’s
inequalities, as well as the Bennet’s inequality [37].

Theorem 1 (Bennet’s inequality [37]). Let x1 . . . , xn be
independent random variables and E(xi) = 0, E(x2

i ) = σ2
i

and |xi| < M almost surely. Then,

Pr

(
n∑

i=1

xi ≥ α

)
≤ exp

(
−nσ2

M2
h

(
αM

nσ2

))
,

for any 0 ≤ α < nM , where h(x) = (1 + x) ln(1 + x) − x
and nσ2 =

∑n
i=1 σ

2
i .

Theorem 2 (The improved Bennet’s inequality [38]). As-
sume that x1 . . . , xn are independent random variables and
E(xi) = 0, E(x2

i ) = σ2
i and |xi| < M almost surely.

Additionally, let σ2 = 1
n

∑n
i=1 σ

2
i and

A =
M2

σ2
+

nM

α
− 1,

B =
nM

α
− 1,

Λ = A−W (BeA), (29)

where W (·) is the Lambert W function. Denote

U(n, α,M, σ2) ≜

exp

[
−Λα

M
+ n ln

(
1 +

σ2

M2

(
eΛ − 1− Λ

))]
. (30)

Then, for any 0 ≤ α < nM

Pr

(
n∑

i=1

xi ≥ α

)
≤ U(n, α,M, σ2).

APPENDIX B

Proof of Proposition 1: Recall that ỹi = w1,siyi −
w0,si(1−yi). We can upper bound the false alarm probability
(8) by

PFA,Cj
≤

Pr

 ∑
i:si∈Cj

[ỹi − E (ỹi|H0)] ≥ γj −
∑

i:si∈Cj

E (ỹi|H0)

∣∣∣∣H0

 .

Furthermore,

E (ỹi|H0) = PFA,siw1,si − (1− PFA,si)w0,si , and

E(ỹ2i |H0) = PFA,siw
2
1,si + (1− PFA,si)w

2
0,si . (31)

It follows that

σ2
FA,si ≜ var (ỹi − E (ỹi|H0) |H0)

= var (ỹi|H0)

= PFA,si(1− PFA,si)(w1,si + w0,si)
2. (32)

Now, we can use Theorem 2 to upper bound the false alarm
probability of the decision of cluster j by substituting

xi = ỹi − E (ỹi|H0)

= ỹi − PFA,siw1,si + (1− PFA,si)w0,si ,

αFA,j = γj −
∑

i:si∈Cj

E(ỹi|H0)

= γj −
∑

i:si∈Cj

(PFA,siw1,si − (1− PFA,si)w0,si).

Recall that PFA,si ∈ (0, 0.5). It follows that σ2
FA,j =

1
nCj

∑
i:si∈Cj

PFA,si(1−PFA,si)(w1,si +w0,si)
2, and MFA,j =

maxi:si∈Cj
{mFA,i} where

mFA,i = max {|w1,si − E (ỹi|H0)| , |w0,si + E (ỹi|H0)|}
= (1− PFA,si)(w1,si + w0,si).

We denote the resulting constants defined in Theorem 2 by
AFA,j , BFA,j and ΛFA,j . Thus, by the improved Bennett’s
inequality, we have that PFA,Cj

≤ U
(
nCj

, αFA,j ,MFA,j , σ
2
FA,j

)
,

for every γj such that 0 ≤ γj −
∑

i:si∈Cj
(PFA,siw1,si − (1−

PFA,si)w0,si) < nCj
·MFA,j .

Proof of Proposition 2: Similarly to the proof of
Proposition 1, we can use Theorem 2 to upper bound the
missed detection probability of cluster j. Recall that ỹi =
w1,siyi−w0,si(1− yi). We upper bound the missed detection
probability, PMD,Cj

, in (8) as follows

PMD,Cj
≤

Pr

 ∑
i:si∈Cj

[E (ỹi|H1)− ỹi] ≥
∑

i:si∈Cj

E (ỹi|H1)− γj

∣∣∣∣H1

 .

Furthermore,

E (ỹi|H1) = (1− PMD,si)w1,si − PMD,siw0,si , and

E(ỹ2i |H1) = (1− PMD,si)w
2
1,si + PMD,siw

2
0,si .

It follows that

σ2
MD,si ≜ var (E (ỹi|H1)− ỹi|H1)

= var (ỹi|H1)

= PMD,si(1− PMD,si)(w1,si + w0,si)
2.

Now, we use Theorem 2 to upper bound the missed detection
probability of the decision of cluster j by substituting

xi = E (ỹi|H1)− ỹi

= (1− PMD,si)w1,si − PMD,siw0,si − ỹi,
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αMD,j =
∑

i:si∈Cj

E(ỹi|H1)− γj

=
∑

i:si∈Cj

((1− PMD,si)w1,si − PMD,siw0,si)− γj .

Recall that PMD,si ∈ (0, 0.5). It follows that
σ2

MD,j = 1
nCj

∑
i:si∈Cj

PMD,si(1 − PMD,si)(w1,si + w0,si)
2,

and MMD,j = maxi:si∈Cj
{mMD,i}, where

mMD,i = max {|w1,si − E (ỹi|H1)| , |w0,si + E (ỹi|H1)|}
= (1− PMD,si)(w1,si + w0,si).

We denote the resulting constants defined in Theorem 2 by
AMD,j , BMD,j and ΛMD,j . By the improved Bennet’s inequal-
ity we have that PMD,j ≤ U

(
nCj

, αMD,j ,MMD,j , σ
2
MD,j

)
,

for every γj such that 0 ≤
∑

i:si∈Cj
((1 − PMD,si)w1,si −

PMD,siw0,si)− γj < nCjMMD,j .

APPENDIX C

Proof of Proposition 3: Denote

z̃j = τj
[
w1,Cj

zj − w0,Cj
(1− zj)

]
.

We rewrite the false alarm probability in (12) as

PFA = Pr

(
Nc∑
j=1

[z̃j − E(z̃j |H0)] ≥ γ −
∑
∑Nc

j=1

E(z̃j |H0)

∣∣∣∣H0

)
.

By the law of total expectation on τj ,

E (z̃j |H0) = pcom,Cj

[
PFA,Cj

w1,Cj
− (1− PFA,Cj

)w0,Cj

]
≜ E0,j ,

E(z̃2j |H0) = pcom,Cj

[
PFA,Cj

w2
1,Cj

+ (1− PFA,Cj
)w2

0,Cj

]
.

It follows that

σ2
FA,Cj

≜ var (z̃j − E (z̃j |H0) |H0)

= var (z̃j |H0)

= pcom,Cj

[
PFA,Cjw

2
1,Cj

+ (1− PFA,Cj )w
2
0,Cj

]
− E2

0,j .

We use Theorem 2 to upper bound the false alarm probability
of the final decision of the FC by substituting j with i in
Theorem 2 and

xj = z̃j − E (z̃j |H0) = z̃j − E0,j ,

αFA = γ −
Nc∑
j=1

E(z̃j |H0) = γ −
Nc∑
j=1

E0,j .

In this case,

σ2
FA =

1

Nc

Nc∑
j=1

[
pcom,Cj

(
PFA,Cjw

2
1,Cj

+ (1− PFA,Cj )w
2
0,Cj

)
− E2

0,j

]
.

Additionally, MFA = maxj∈[1:Nc]{mFA,j}, where

mFA,j = max
{∣∣w1,Cj

− E (z̃j |H0)
∣∣ , ∣∣w0,Cj

+ E (z̃j |H0)
∣∣}

= max{|w1,Cj
− E0,j |, |w0,Cj

+ E0,j |}.

We denote the resulting constants defined in Theorem 2 by
AFA, BFA and ΛFA. It follows from the improved Bennett’s
inequality that PFA ≤ U

(
Nc, αFA,MFA, σ

2
FA

)
, for every γ such

that 0 ≤ γ −
∑Nc

j=1 E0,j < Nc ·MFA.
Proof of Proposition 4: Similarly to the proof of Propo-

sition 3, we can use Theorem 2 to upper bound the missed
detection probability of the final decision of the FC. Recall
that z̃j = τj

[
w1,Cj

zj − w0,Cj
(1− zj)

]
. We can rewrite the

missed detection probability in (12) as

PMD = Pr

 Nc∑
j=1

[E (z̃j |H1)− z̃j ] >

Nc∑
j=1

E (z̃j |H1)− γj

∣∣∣∣H1

 .

By the law of total expectation on τj ,

E (z̃j |H1) = pcom,Cj

[
(1− PMD,Cj

)w1,Cj
− PMD,Cj

w0,Cj

]
≜ E1,j ,

E(z̃2j |H1) = pcom,Cj

[
(1− PMD,Cj )w

2
1,Cj

+ PMD,Cjw
2
0,Cj

]
.

It follows that,

σ2
MD,Cj

≜ var (E (z̃j |H1)− z̃j |H1)

= var (z̃j |H1)

= pcom,Cj

[
(1− PMD,Cj

)w2
1,Cj

+ PMD,Cj
w2

0,Cj

]
− E2

1,j .

We use Theorem 2 we upper bound the missed detection
probability of the final decision of the FC by substituting j
with i in Theorem 2 and

xj = E (z̃j |H1)− z̃j = E1,j − z̃j ,

αMD =

Nc∑
j=1

E(z̃j |H1)− γ =

Nc∑
j=1

E1,j − γ.

In this case,

σ2
MD =

1

Nc

Nc∑
j=1

[
pcom,Cj

(
(1− PMD,Cj

)w2
1,Cj

+ PMD,Cj
w2

0,Cj

)
− E2

1,j

]
,

(33)

and MMD = maxj∈[1:Nc]{mMD,j}, where

mMD,j = max
{∣∣w1,Cj − E (z̃j |H1)

∣∣ , ∣∣w0,Cj + E (z̃j |H1)
∣∣}

= max
{
|w1,Cj

− E1,j |, |w0,Cj
+ E1,j |

}
.

We denote the resulting constants defined in Theorem 2 by
AMD, BMD and ΛMD. By the improved Bennet’s inequality we
have that PMD ≤ U

(
Nc, αMD,MMD, σ

2
MD

)
, for every γ such

that 0 ≤
∑Nc

j=1 E1,j − γ < Nc ·MMD.
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