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Abstract— In this paper, we focus on the autonomous multia-
gent taxi routing problem for a large urban environment where
the location and number of future ride requests are unknown
a-priori, but follow an estimated empirical distribution. Recent
theory has shown that if an α−competitive base policy is
stable then a rollout-based algorithm with such a base policy
produces a near-optimal stable policy. In the routing setting, a
policy is stable if its execution keeps the number of outstanding
requests uniformly bounded over time. Although, rollout-based
approaches are well-suited for learning cooperative multiagent
policies with considerations for future demand, applying such
methods to a large urban environment can be computationally
expensive. Large environments tend to have a large volume of
requests, and hence require a large fleet of taxis to guarantee
stability. In this paper, we aim to address the computational
bottleneck of multiagent rollout by proposing an approximate
multiagent rollout-based two phase algorithm that reduces
computational costs, while still achieving a stable near-optimal
policy. Our approach partitions the graph into sectors based on
the predicted demand and the maximum number of agents that
can run sequentially given the user’s computational resources.
The algorithm then applies instantaneous assignment (IA) for
re-balancing taxis across sectors and a sector-wide multiagent
rollout algorithm that is executed in parallel for each sector. We
characterize the number of taxis m that is sufficient for IA, an
α−competitive base policy, to be stable, and derive a necessary
condition on m as time goes to infinity. Our numerical results
show that our approach achieves stability for an m that satisfies
the theoretical conditions. We also empirically demonstrate that
our proposed two phase algorithm has equivalent performance
to the one-at-a-time rollout over the entire map, but with
significantly lower runtimes.

I. INTRODUCTION

Autonomous robotic taxis are currently operating in multi-
ple cities, including Austin, Phoenix, and San Francisco [1],
with possibilities of being deployed to more cities in the near
future [2]. This widespread deployment of autonomous taxis
creates new opportunities for improved on-demand mobility
through coordinated routing and planning, and poses inter-
esting new practical and theoretical problems for the field
of robotics. For instance, the ability of autonomous taxis to
communicate with each other and with a centralized server
allows for the orchestration of fleet-wide coordinated plans
that result in more requests being serviced [3].
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Coordination plans have been studied in the literature in
the form of the Dynamic Vehicle Routing (DVR) problem
[4] with stochastic demand, where the location and number
of future requests is unknown a-priori. However, due to the
size of the problem and the complexity associated with the
stochasticity of the demand, there are still many research
opportunities related to the design of better and faster al-
gorithms to learn cooperative plans that take into account
future requests and maximally use taxi fleets. Approaches
in the literature have mainly focused on immediate demand
[5] [6] and sector level routing [7] [8] [9] [10] [11], ab-
stracting away either the stochasticity of the demand, or the
complexity associated with “fine-grained” street/intersection
level decisions. Other works, including our previous work
[12], have considered using reinforcement learning methods,
particularly rollout-based approaches [13] [14] [15], to tackle
fine-grained routing decisions. These rollout-based methods
are comprised of three major components: 1) a one-step
lookahead where the immediate future is simulated using
Monte-Carlo approximation for all potential actions 2) a
future cost approximation for each potential action based on
a truncated application of a simple to compute policy known
as the base policy for a finite time horizon 3) a terminal cost
approximation that compensates for the truncated application
of the base policy. Recent theory [15] shows that rollout’s
one-step lookahead cost minimization acts as a Newton step
and hence provides super linear convergence to the optimal
policy. In particular, as long as the base policy is close
to the optimal policy with a reasonable competitive factor
[16] and it is stable, then rollout-based approaches learn
a stable near-optimal policy. This theoretical result makes
rollout-based algorithms very well-suited for tackling the
fine-grained routing problem. In the routing setting, a policy
is said to be stable if its execution results in the number
of outstanding requests being uniformly bounded over time.
Applying these rollout methods to a large urban environment,
however, poses a unique set of challenges that we aim to
address in this paper.

A major challenge of dealing with a city-scale envi-
ronment is the large volume of requests that enters the
system, which then requires a large number of taxis to
guarantee stability. This large number of taxis makes the
application of a multiagent rollout scheme, as proposed in
our previous work [12], computationally prohibitive. In this
paper, we address this computational bottleneck by proposing
an approximation to the multiagent rollout algorithm that
keeps computational costs below user-defined constraints,
while still maintaining stability and the Newton-step property



of rollout. Our proposed method reduces the computational
cost of executing multiagent rollout with a large number
of taxis by partitioning the map into disjoint sectors based
on expected demand and the maximum number of taxis
that can be run sequentially given the user’s computational
resources. Our method then executes a two-phase algorithm
composed of a high level planner and multiple low level
planners that are ran in parallel. The high level planner routes
taxis between sectors based on the current and estimated
future demand, while the low level planners route taxis
within each sector by employing multiagent rollout with
instantaneous assignment with reassignment (IA-RA) as the
base policy. We choose IA-RA as the base policy since
it is 2-competitive [16], which facilitates the super-linear
convergence [15] of rollout, and the resulting rollout policy
will be stable and closer to the optimal than the base policy.
We provide theoretical results for a sufficient condition on
the total number of taxis m that will guarantee standard IA
to be stable. Compared to previous work [17][18][19] [20],
our analysis uses the full stochasticity of the system and
assumes that the pickups and dropoffs are jointly distributed.
In addition, for the case where pickups and dropoffs can be
assumed independent, we also provide a necessary condition
on m for asymptotic stability of standard IA as time goes
to infinity, building on the results proposed in [19]. We
empirically demonstrate that our proposed approach results
in a significantly lower computational cost and similar per-
formance as multiagent rollout over the entire map, and we
verify that stability is achieved for fleet sizes laying within
the range that we theoretically characterize.

II. PROBLEM FORMULATION

In this section, we present the formulation of a large scale
multiagent taxicab routing and pickup problem as a discrete
time, finite horizon, stochastic Dynamic Programming (DP)
problem that plans over a city-scaled street network. In
the following subsections, we provide definitions for our
environment, requests, state and control spaces, the concept
of stability, and the challenges associated with the large scale.

A. Environment

We assume that autonomous taxis are deployed in an
urban environment with a fixed street topology (see Fig. 1).
The environment is hence represented as a directed graph
G = (V,E), where V = {1, . . . , n} corresponds to the
set of street intersections in the map numbered 1 through
n, while E ⊆ {(i, j)|i, j ∈ V } corresponds to the set of
directed streets that connect intersections i and j. The set
of neighboring intersections to intersection i is denoted as
Ni = {j|j ∈ V, (i, j) ∈ E}. We also assume that the
environment can be divided into sectors sk ⊆ V , such that
V =

⋃
k sk and sk ∩ sh = ∅,∀k ̸= h.

B. Requests

We define a ride request r as a tuple r = ⟨ρr, δr, tr, ϕr⟩,
where ρr ∈ V and δr ∈ V correspond to the nearest
intersection to the request’s desired pickup and drop-off

Fig. 1. Street network used in numerical experiments

locations, respectively; tr corresponds to the time at which
the request was placed into the system; and ϕr ∈ {0, 1} is
an indicator, such that ϕr = 1 if the request has been picked
up by a vehicle, ϕr = 0 otherwise. We model the number of
requests that enter the system at time t as a random variable
ηt, which has the same distribution as random variable
η with an unknown underlying distribution pη , which is
fixed for the entire length of the time horizon T and its
estimated probability distribution, denoted p̃η is estimated
from historical trip data. We denote the set of ride requests
that enter the system at time t as rt. Here the cardinality of
the set of new requests at time t is |rt| = ηt. We model the
pickup intersection for an arbitrary request r as the random
variable ρr. Similarly, we model the drop-off intersection for
request r as the random variable δr. We assume that requests
are independent and identically distributed (i.i.d), and hence
we drop the subscripts when talking about their distribu-
tions. Random variables ρ and δ are jointly distributed and
have unknown underlying probability distributions pρ and
pδ|ρ, respectively. These distributions do not change over
the entire length of the time horizon T . We denote the
marginal distribution of δ as pδ . We also denote the estimated
categorical distributions as p̃ρ and p̃δ|ρ, and p̃δ , respectively.
These categorical distributions are estimated using historical
trip data. We define rt = {r|r ∈ rt′ , ϕr = 0, 1 ≤ t′ ≤ t} as
the set of outstanding ride requests that have not yet been
picked up by any taxi at time t.

C. State and control space

We assume there is a total of m taxis and all taxis can
perfectly observe all requests, and other taxis’ locations and
occupancy status. We assume that all of the taxis remain
inside the predefined street network G. We represent the state
of the system at time t as a tuple xt = ⟨ν⃗t, τ⃗t, rt⟩. We define
ν⃗t = [ν1t , . . . , ν

m
t ] as the list of locations for all m taxis at

time t, where νℓt ∈ V corresponds to the index of the closest
intersection to the geographical position of agent ℓ. We define
τ⃗t = [τ1t , . . . , τ

m
t ] as the list of time remaining in current

trip for all m taxis. If agent ℓ is available, then it has not
picked up a request and hence τ ℓt = 0, otherwise τ ℓt ∈ N+.
The initial location of an arbitrary agent ℓ at time t = 0 is
given by random variable ξℓ. All ξℓ for ℓ = 1, . . . ,m are



assumed to be independent and identically distributed with
known underlying distribution pξ.

We denote the control space for agent ℓ at time t as
Uℓ

t(xt). If the agent is available (i.e. τ ℓt = 0), then Uℓ
t(xt) =

{Nνℓ
t
, νℓt , ψr}, where ψr corresponds to a special pickup

control that becomes available if there is a request r ∈ rt
with pickup at the location of agent ℓ (i.e. ρr = νℓt ). If
the agent is currently servicing a request r (i.e. τ ℓt > 0),
then Uℓ

t(xt) = {ζ}, where ζ corresponds to the next
hop in Dijkstra’s shortest path between agent ℓ’s current
location νℓt and the destination of the request δr. Since this
formulation represents a separable control space for each
agent, the controls available to all m taxis at time t, Ut(xt),
is expressed as the Cartesian product of local control sets for
each agent, such that Ut(xt) = U1

t (xt)× · · · ×Um
t (xt).

D. Stability of a policy

We define a policy π = {µ1, . . . µT } as a set of functions
that maps state xt into control ut = µt(xt) ∈ Ut(xt).
Using a similar formulation as in [20], we define the total
distance to be traveled in service of a request r given a
policy π as Wr,π = d(lr,π, ρr) + d(ρr, δr), where lr,π
is the location of a taxi assigned to request r based on
policy π, and d : V × V → N+ is a function that gives
the length of the shortest path between two locations. We
define the total distance to be traveled in service of all the
requests that enter the system for the entire time horizon T as
Zπ,T =

∑T
t=1

∑Rt

r=Rt−1+1Wr,π , where the random variable
Rt =

∑t
t′=1 ηt′ represents the total number of requests that

have entered the system until time t. It is important to note
that R0 = 0. We define the total distance that can be covered
by a fleet of m taxis as m ·T since each agent can travel unit
distance at each time step. Assuming that we have at least as
many available taxis at each time step as incoming requests,
a given policy π is said to be stable if, for a fixed fleet size
of m taxis, the expected number of outstanding requests is
uniformly bounded. Hence, a policy π is stable as long as
the distance to be traveled in service of all the requests that
enter the system according to policy π is smaller than the
total distance that can be covered by a fleet of m taxis. In
other words, for a policy π to be stable (following a similar
argument as in [20]), the expected total distance for servicing
all taxis should be upper bounded by the distance covered
by taxis, i.e., E[Zπ,T ] < m · T.

E. Challenges of a large scale multi-agent problem

We are interested in learning a cooperative pickup
and routing policy on a city-scale map that minimizes
the total wait time for all requests over a finite hori-
zon of length T . We denote the state transition func-
tion as f , such that xt+1 = ft (xt, ut, η, ρ, δ), where
xt+1 is the resulting state after control ut ∈ Ut(xt)
has been applied from state xt. We define the stage cost
gt (xt, ut, η, ρ, δ) = |rt| as the number of outstanding
requests at time t. We denote the cost of executing policy
π as Jπ(x1) = E

[
gT (xT ) +

∑T−1
t=1 gt (xt, µt(xt), η, ρ, δ)

]
,

where gT (xT ) = |rT| is the terminal cost. Since the control

space for the problem grows exponentially with the number
of taxis, obtaining an optimal policy through the Bellman
equations is intractable. For this reason, we consider policy
improvement schemes, such as one-at-a-time rollout [13],
[21], that allows us to obtain a lower cost policy by improv-
ing upon a base policy and it solves several smaller looka-
head optimizations, one per agent, scaling linearly in the
number of agents. We define base policy π = {µ1, . . . µT }
as an easy to compute heuristic that is given. One-at-a-time
rollout finds an approximate policy π̃ = {µ̃1, . . . µ̃T }, where
µ̃t(xt) = (µ̃1

t (xt), . . . , µ̃
m
t (xt)), t = [1, . . . , T ]. For state

xt, µ̃ is found by solving m minimizations starting from
ℓ = [1, . . . ,m] as follows:

µ̃ℓ
t(xt) ∈ argmin

uℓ
t∈Uℓ

t(xt)

E[gt(xt, ut, η, ρ, δ) + J̃π,t+1(xt+1)],

(1)
where ut = (µ̃1

t (xt) : µ̃ℓ−1
t (xt), u

ℓ
t, µ

ℓ+1
t (xt) :

µm
t (xt)), and J̃π,t+1(xt+1) = |rt+1+th | +∑t+th
t′=t+1 gt′(xt′ , µt′(xt′), η, ρ, δ) is a cost approximation

derived from th applications of the base policy π from state
xt+1, with a terminal cost approximation |rt+1+th |.

To apply one-at-a-time rollout to a large city-scale problem
that scales linearly in the number of agents, we design
an algorithm that approximates this rollout scheme, but
incurs a lower computational cost that satisfy user defined
computational constraints. Our algorithm is given in Sec. III.
We must also find a sufficiently large fleet size m for which a
reasonable base policy π is stable, such that E[Zπ,T ] < m·T ,
as defined in Sec. II-D. In particular, we are interested in
the stability of the policy πbase associated with IA-RA, as
this policy is 2-competitive [16] and hence our approximate
rollout approach obtains a near-optimal policy.

III. APPROXIMATION ALGORITHM FOR MULTIAGENT
ROLLOUT

In this section we propose an approximate algorithm for
multiagent rollout (see Section II-E, Eq. 1). Our proposed
method is composed of a two phase planning scheme that re-
duces the computational cost of one-at-a-time rollout through
partitioning of the map using the demand distribution. We
take into account user defined computational constraints in
the form of the maximum number of taxis that can be run
sequentially mlim, and the length of the planning horizon
th (longer planning horizon result in longer runtimes). The
algorithm is detailed in Algorithm 1. The proposed two-
phase algorithm also takes as input m the total number of
taxis in the fleet. We provide theoretical bounds on m in
Sec. IV and calculated values in practice in Sec. V-C .

The first routine in Algorithm 1 is denoted as
get partitions and it solves a capacitated facility location
problem [22] to place the center of each partition on the
map. The capacity for each partition center is set to be mlim,
and then the expected demand for the ride service during the
entire time horizon is used as the demand for the capacitated
facility location problem. The algorithm then assigns each
node to the closest partition center using weighted k-means,
where the weights of the nodes are given by the probability



Fig. 2. Two phased approach

distribution of pickups. This routine guarantees that the size
of each partition is then inversely proportional to the density
of requests, and each partition is servicing an expected
number of requests that can be served by the maximum
number of taxis that can be run sequentially mlim.

After obtaining the partitions, Algorithm 1 executes
two routines at each time step: High level planner (see
Alg. 2), and Low level planner (see Alg. 3). Intuitively,
the High level planner re-balances the taxis between par-
titions using an instantaneous assignment of taxis to current
and expected future requests for the next th time-steps as
given by a certainty equivalence approximation. It returns
the controls for taxis that are expected to go across regions
ugh, as well as the list of high level taxis m̂, and d̂ the set
of locations for the high level taxis to move towards. The
Low level planner, on the other hand, plans for routing and
pickup actions for taxis that remain in their original sectors
according to the high level planner, executing one-at-a-time
rollout with base policy IA-RA as defined in Eq. 1 to obtain
ũkt the control of taxis in sector k at time t.

After partitioning the graph, the state xt consists of K
sub-states {xkt }Kk=1, one corresponding to a partition k =
{1, . . . ,K} of the graph. The state transition of partition k
is given by, xkt+1 = fk(xkt , u

k
t , u

g
h(t, k), η, ρ, δ). The control

ut can be separated as {ukt , u
g
h(t, k)}Kk=1, where the control

component ukt corresponds to the taxis that are local to
partition k. The control component ugh(t, k) corresponds
to the controls of taxis coming into partition k as given
by the higher level planner. Since we consider the length
of outstanding requests as the stage cost, we have |rt| =
gt(xt, ut, η, ρ, δ) =

∑K
k=1 g

k
t (x

k
t , u

k
t , u

g
h(t, k), η, ρ, δ) =∑K

k=1 |r
k
t |, where rkt ⊆ rt, and ∀r ∈ rkt , ρr ∈ sk. The

cost of our two-phase policy π2P is

Jπ2P
(xt) = E[

T∑
t′=t

K∑
k=1

gkt′(x
k
t′ , ũ

k
t′ , u

g
h(t

′, k), η, ρ, δ)]

Figure 2 shows the two phased approach with an example
with 3 taxis and 4 outstanding requests.

Algorithm 1: Two-phase Planner
Input: Initial state x1, maximum number of taxis per

sector mlim, fleet size m, planning horizon th
Output: policy π2P that gives routing/pickup

strategy for all taxis in the system
1 K ← m

mlim

2 {sk}Kk=1 ← get partitions(mlim,K,G, η, ρ, δ)

3 d̂← {}, m̂← []
4 for each time planning step t ∈ [1, . . . , T ] do
5 ugh, m̂, d̂← High level planner(xt, η, ρ, δ,

πbase, th, m̂, d̂, {sk}Kk=1)
6 for each sector sk, k ∈ {1, . . . ,K} in parallel do
7 ũkt ← Low level planner(xkt , u

g
h(t, k), η, ρ,

δ, πbase, th, m̂, d̂)

8 set µ2P,t(xt) = {ũkt , u
g
h(t, k)}Kk=1

9 xt+1 ∼ f(xt, µ2P,t(xt), η, ρ, δ)

10 set π2P = {µ2P,t}Tt=1

11 return π2P

Algorithm 2: High level planner

Input: xt, η, ρ, δ, πbase, th, m̂, d̂, {sk}Kk=1

Output: control ugh for taxis in m̂, m̂ the list of high
level taxis, d̂ the list of high level
destinations for the high level taxis

1 rCE ← list of th · E[η] future requests emulated by
certainty equivalence for the next th steps

2 A← instantaneous assignment for the taxi set
{ℓ|ℓ ∈ {1, . . . ,m}, τℓ = 0} to requests {rt ∪ rCE}

3 Define
sector(v) ∈ {k|k ∈ {1, . . . ,K}, v ∈ sk},∀v ∈ V

4 Define next hop in partition(vstart, vend) ∈
argminv∈ssector(vend)∧v∈shortest path(vstart,vend)

d(vstart, v),
∀vstart, vend ∈ V, sector(vstart) ̸= sector(vend)

5 for each (ℓ, r) ∈ A, do
6 if sector(νℓ) ̸= sector(ρr) then
7 m̂← m̂ ∪ {ℓ},
8 d̂[ℓ]← next hop in partition(νℓ, ρr)

9 for each taxi ℓ ∈ m̂ do
10 ugh(t

′, k)← ugh(t
′, k) ∪ v,

|v ∈ shortest path(vℓ, d̂[ℓ])[t′], v ∈ sk, 0 < t′ ≤
d(vℓ, d̂[ℓ])

11 return ugh, m̂, d̂

IV. THEORETICAL RESULTS

In this section, we provide a sufficient condition for
choosing a fleet size m that will make the policy πbase, in-
stantaneous assignment with reassignment (IA-RA), a stable
policy. We also provide an asymptotic necessary condition
on m for the stability of πbase as T →∞.



Algorithm 3: Low level planner

Input: xkt , u
g
h(t, k), η, ρ, δ, πbase, th, m̂, d̂

Output: ũkt
1 Find taxis inside the sector sk as

mk = {ℓ|ℓ ∈ {1, . . . ,m}, vℓ ∈ sk, ℓ /∈ m̂}
2 Execute one-at-a-time rollout to obtain the control for

each of the remaining taxis in mk

3 Starting from, ℓ = [1, . . . , |mk|]

ũ
k,mk[ℓ]
t ∈ argmin

u∈U
mk[ℓ]
t (xk

t )

E[gkt (x
k
t , u

′, ugh(t, k), η, ρ, δ)

+ J̃k(xkt+1)],
(2)

where u′ = (ũ
k,mk[1]
t : ũ

k,mk[ℓ−1]
t ,u, uk,m

k[ℓ+1]
base,t :

u
k,mk[|mk|]
base,t ) and uk,ℓbase,t is the control given by the

base policy πk
base in the local state xkt , and the next

state is xkt+1 = fk(xkt , u
′, ugh(t, k), η, ρ, δ) . The

variable J̃k(xkt+1) is the cost of applying the base
policy th times followed by a terminal cost
approximation.

4 return ũkt = [ũ
k,mk[1]
t , . . . , ũ

k,mk[ℓ]
t ]

A. Sufficient condition for stability of πbase

We are interested in finding the sufficient conditions on
the fleet size m that guarantee the stability of policy πbase
such that the relation E[Zπbase,T ] < m · T always holds. To
do so, we first analyze the policy π̂ referred to as random
instantaneous assignment, where taxis are randomly assigned
to requests. Under this policy, a taxi does not move until
it has been assigned to a request. Once a taxi is assigned
to a request, the taxi cannot be assigned to other requests
until it has serviced the originally assigned request. By
having a random assignment of requests to taxis, lr,π̂ for
an arbitrary request r becomes a random variable instead
of a deterministic function of the requests in the system
and the locations of all the taxis. The randomness in π̂ also
makes the request’s pickup location ρr and the location of
the taxi assigned to the request lr,π̂ independent, making the
analysis easier. Using this policy, we can find an upper bound
on E[Zπ̂,T ], and choose m such that m · T is greater than
the upper bound, making π̂ a stable policy by definition.
We then show that the policy πbase given by a matching
algorithm, like the auction algorithm [23] or the modified
JVC algorithm [24], results in a smaller service distance
than π̂, i.e., Zπbase,T ≤ Zπ̂,T . This implies E[Zπbase,T ] ≤
E[Zπ̂,T ] < m ·T , and hence πbase constitutes a stable policy
for the sufficiently large fleet size m found in the analysis
of the stability of π̂. We present the formal claim for the
sufficient conditions on m for the stability of π̂ below in the
following lemma.

Lemma 1: Let the random variable lrand with support V
represent the location of a random taxi that gets assigned to
a request after that taxi has previously served a different
request. Define Dmax ≜ max{E[d(ξ, ρ)], E[d(lrand, ρ)]} +

E[d(ρ, δ)]. If the fleet size m satisfies

m > Eη[η] ·Dmax,

then the policy associated with a random instantaneous
assignment of taxis to requests, π̂, constitutes a stable policy
such that E[Zπ̂,T ] < m · T .

Proof: First we rewrite Zπ̂,T to consider the index of
the requests irrespective of the time at which those requests
enter the system. This allows us to get:

Zπ̂,T =

RT∑
r=1

Wr,π̂

where RT =
∑T

t=1 ηt. Under the policy π̂, a request is
randomly assigned to a taxi. For this reason, there is a
possibility that not all taxis in the fleet end up servicing
a request. Hence, we define m̄ as the random variable that
corresponds to the effective fleet size over the entire time
horizon, i.e., the number of taxis that pickup at least one
request. We reindex requests such that requests that are
assigned to taxis that haven’t serviced any requests come
before requests that are assigned to taxis that have already
serviced one or more requests. This means that the first m̄
requests after reindexing are serviced by taxis that are still
at their original initial locations. The rest of the requests are
then serviced by taxis that are at the dropoff location of their
previously serviced request. We can therefore, rewrite Zπ̂,T

as follows:

Zπ̂,T =

m̄∑
a=1

Wa,π̂ +

RT∑
b=m̄+1

Wb,π̂

Where, we have Wa,π̂ = d(la,π̂, ρa) + d(ρa, δa). Similarly,
Wb,π̂ = d(lb,π̂, ρb)+ d(ρb, δb). The random variable la,π̂ has
the same distribution as ξ since under π̂ taxis are randomly
matched to requests and taxis that haven’t been assigned to
a request are still at their initial locations. Similarly, lb,π̂
has the same distribution as lrand since taxis are randomly
matched to requests and taxis that have already serviced at
least one request are located at the drop-off locations of their
previously serviced request.

We define Wrinit,π̂ = d(lrinit,π̂ , ρrinit) + d(ρrinit , δrinit), where
lrinit,π̂ is a random variable with the same distribution as ξ,
ρrinit is a random variable with the same distribution as ρ,
and δrinit is a random variable with the same distribution as
δ. Now, we define Wrnext,π̂ = d(lrnext,π̂ , ρrnext)+d(ρrnext , δrnext),
where lrnext,π̂ is a random variable with the same distribution
as lrand, ρrnext is a random variable with the same distribution
as ρ, and δrnext is a random variable with the same distribution
as δ. We can see that all Wa,π̂ have the same distribution
as Wrinit,π̂ since Wa,π̂ is a function of three independent
random variables la,π̂, ρa, and δa with the same distributions
as ξ, ρ and δ, respectively. Similarly, all Wb,π̂ have the same
distribution as Wrnext,π̂ since Wb,π̂ is a function of three
independent random variables lb,π̂, ρb, and δb with the same
distributions as lrand, ρ and δ, respectively. Using these two
facts, we will obtain an upper bound for E[Zπ̂,T ]. Then, we
set m · T to be greater than the upper bound to satisfy the



definition of stability given in Sec. II-D. We consider the
following:

E[Zπ̂,T ] = E

[
m̄∑

a=1

Wa,π̂ +

RT∑
b=m̄+1

Wb,π̂

]
(1)
= E

[
E

[
m̄∑

a=1

Wa,π̂

∣∣∣∣∣m̄
]]

+ E

[
E

[
RT∑

b=m̄+1

Wb,π̂

∣∣∣∣∣RT , m̄

]]
(2)
= E

[
m̄∑

a=1

E[Wa,π̂|m̄]

]

+ E

[
RT∑

b=m̄+1

E [Wb,π̂|RT , m̄]

]
(3)
= E

[
m̄∑

a=1

E[Wrinit,π̂]

]
+ E

[
RT∑

b=m̄+1

E [Wrnext,π̂]

]
= E[m̄] · E[Wrinit,π̂] + E [(RT − m̄) · E [Wrnext,π̂]]

= E[m̄] · E[Wrinit,π̂]

+ (E[RT ]− E[m̄]) · E[Wrnext,π̂]

Where equality (1) comes from linearity of expectations
and the law of total expectations; equality (2) comes from
linearity of the conditional expectations; equality (3) comes
from the fact that Wa,π̂ is independent of m̄, Wa,π̂ has the
same distribution as Wrinit,π̂ , Wrb,π̂ is independent of RT

and m̄, and Wrb,π̂ has the same distribution as Wrnext,π̂ as
explained before.

We can obtain an upper bound for E[Wrinit,π̂] as follows:

E[Wrinit,π̂]
(1)
= E[d(lrinit,π̂ , ρrinit)] + E[d(ρrinit , δrinit)]

(2)
= E[d(ξ, ρ)] + E[d(ρ, δ)]

≤ max{E[d(ξ, ρ)], E[d(lrand, ρ)]}+ E[d(ρ, δ)]

(3)
= Dmax (3)

Where equality (1) comes from linearity of expectations,
equality (2) comes from the definition of Wrinit,π̂ , and equal-
ity (3) comes from the definition of Dmax. Similarly, we can
obtain an upper bound for E[Wrnext,π̂] as follows:

E[Wrnext,π̂]
(1)
= E[d(lrnext,π̂ , ρrnext)] + E[d(ρrnext , δrnext)]

(2)
= E[d(lrand, ρ)] + E[d(ρ, δ)]

≤ max{E[d(ξ, ρ)], E[d(lrand, ρ)]}+ E[d(ρ, δ)]

(3)
= Dmax (4)

Where equality (1) comes from linearity of expectations,
equality (2) comes from the definition of Wrnext,π̂ , and
equality (3) comes from the definition of Dmax. Using these

two results, we can upper bound E[Zπ̂,T ] as follows:

E[Zπ̂,T ]
(1)

≤ E[m̄] ·Dmax + (E[RT ]− E[m̄]) ·Dmax

= E[RT ] ·Dmax

(2)
= E

[
T∑

t=1

ηt

]
·Dmax

(3)
=

T∑
t=1

E[η] ·Dmax

= T · E[η] ·Dmax

where inequality (1) comes from and application of the upper
bounds in Equation 3 and Equation 4, equality (2) comes
from the definition of RT , and equality (3) comes from the
linearity of expectations and the fact that variables ηt are
independent and identically distributed. From the stability
definition given in Sec. II-D, π̂ is stable as long as E[Zπ̂,T ] <
m · T . Therefore, if we choose m · T > T ·E[η] ·Dmax and
hence m > E[η] ·Dmax, this would be a sufficient condition
to guarantee that the random instantaneous assignment policy
π̂ is stable such that the relation E[Zπ̂,T ] < m · T holds.

Notice that we can express the probability distribution
plrand for lrand using the marginalization of the probabilities
of the previous pickup-dropoff combinations, and hence all
the terms given in Dmax can be calculated in practice using
historical data. We use the result from lemma 1 to show that
the same m chosen to guarantee stability of π̂ serves as a
sufficiently large m to guarantee stability of πbase which is
formalized in the Theorem 1.

Theorem 1: Assume that the fleet size m satisfies the
condition given in lemma 1. Then the policy πbase, which
corresponds to standard instantaneous assignment with reas-
signment at each time step (IA-RA), is a stable policy such
that E[Zπbase,T ] < m · T , for a finite horizon T > 0.

Proof: To prove this statement, we will show that
random instantaneous assignment π̂ results in longer distance
traveled per assigned request than π̄ standard instantaneous
assignment with commitment to the initial assignment such
that Zπ̄,T ≤ Zπ̂,T . Then we will show that π̄ results in longer
distance traveled per assigned request than πbase standard
instantaneous assignment with reassignment at each time step
such that Zπbase,T ≤ Zπ̄,T . Since π̂ is a stable policy for a
fleet size of size m > E[η] ·Dmax according to lemma 1, and
Zπbase,T ≤ Zπ̄,T ≤ Zπ̂,T , then we can conclude that πbase is
also stable since E[Zπbase,T ] ≤ E[Zπ̄,T ] ≤ E[Zπ̂,T ] < m · T .

We start by showing Zπ̄,T ≤ Zπ̂,T . To do this, we consider



the following:

Zπ̂,T
(1)
=

T∑
t=1

Rt∑
r=Rt−1+1

d(lr,π̂, ρr) + d(ρr, δr)

≥
T∑

t=1

min
lRt−1+1,...,lRt

Rt∑
r=Rt−1+1

d(lr, ρr) + d(ρr, δr)

(2)
=

T∑
t=1

Rt∑
r=Rt−1+1

Wr,π̄

(3)
= Zπ̄,T

Where equality (1) comes from the definition of Wr,π̂ ,
equality (2) comes from the definition of π̄, and equality (3)
comes from the definition of Zπ̄,T . This shows that Zπ̄,T ≤
Zπ̂,T . From this, we get E[Zπ̄,T ] ≤ E[Zπ̂,T ] < m · T , and
hence we can conclude that π̄ is a stable policy for a fleet
of size given by lemma 1.

To prove that Zπ̄,T ≥ Zπbase,T , we will consider an
argument for two arbitrary requests rk and rh. We provide an
argument with two requests for simplicity, but it is important
to note that this argument can be easily generalized to as
many requests as needed. The distance associated with the
assignments produced by π̄ is Wrk,π̄ = d(lrk,π̄, ρrk) +
d(ρrk , δrk) and Wrh,π̄ = d(lrh,π̄, ρrh) + d(ρrh , δrh). We
assume that request rk enter the system before request rh, but
request rh enter the system at time t′ before the taxi assigned
to request rk was able to pick request rk up. If we consider
the time step t′, policy π̄ will match request rh to one of the
taxis that hasn’t been assigned to any other request. Policy
πbase, on the other hand, will perform a matching based on the
distance from any available taxi to request rh. In this sense,
the original assignment given by π̄ will be preserved unless
a different assignment of free taxis to outstanding requests
results in a lower distance. If we focus on the impact of the
reassignment for these two requests at time t′, we get:

Zπ̄ =Wrk,π̄ +Wrh,π̄

(1)
= d(lrk,π̂, ρrk) + d(ρrk , δrk) + d(lrh,π̄, ρrh)

+ d(ρrh , δrh)

≥ min
lrk ,lrh

d(lrk , ρrk) + d(ρrk , δrk) + d(lrh , ρrh)

+ d(ρrh , δrh)

(2)
= Wrk,πbase +Wrh,πbase

(3)
= Zπbase

where equality (1) comes from the definition of Wrk,π̄ and
Wrh,π̄ , equality (2) comes from the definition of πbase, and
equality (3) comes from the definition of Zπbase,T .

From this, we can conclude Zπ̄,T ≥ Zπbase,T , and hence
E[Zπbase,T ] ≤ E[Zπ̄,T ] < m · T . Therefore, we can conclude
that πbase is a stable policy for a fleet size of m as given by
lemma 1.

B. Necessary condition for stability of πbase

We are interested in finding the necessary condition for
stability of policy πbase asymptotically as T → ∞. For this
reason, we want to find a lower bound on E[Zπbase,T /T ].
Choosing a fleet size m smaller than this lower bound
would make the policy πbase asymptotically unstable, i.e.,
E[Zπbase,T ] ≥ m · T as T → ∞. To obtain this result, we
first find a lower bound for E[Zπbase,T /T ], the expected travel
distance associated with servicing the requests that enter the
system per time step, and then we apply a limit as T →∞
to obtain an expression for the asymptotic lower bound. The
following theorem states this result formally.

Theorem 2: Let WD(pδ, pρ) denote the first Wasserstein
distance [25] between probability distributions pδ and pρ
with support Ω, such that:

WD(pδ, pρ) = inf
γ∈Γ(pδ,pρ)

∫
x,y∈Ω

||y − x||dγ(x, y),

where || · || is the euclidean metric, and Γ(pδ, pρ) is the
set of measures over the product space Ω × Ω having
marginal densities pδ and pρ, respectively. Define Dmin ≜
WD(pδ, pρ)+E[d(ρ, δ)]. Assume that the random variables
for pickups ρ and drop-offs δ are independent and we have
a fleet of size m ≤ E[η] · Dmin. Then, the policy πbase is
asymptotically unstable, i.e., E[Zπbase,T ] ≥ m ·T as T →∞.

Proof: We denote πbase as the policy that results from
standard instantaneous assignment with rematching at each
time step. We can rewrite Zπbase,T as follows:

Zπbase,T =

RT∑
r=1

Wr,πbase

where RT =
∑T

t=1 ηt. We define m̄ as the random variable
that corresponds to the effective fleet size over the entire time
horizon, i.e., the number of taxis that pickup at least one
request, and we assume that this random variable is upper
bounded by constant mcap, which corresponds to the total
number of taxis that can be deployed in our application.
We reindex requests such that requests that are assigned
to taxis that haven’t serviced any requests yet come before
requests that are assigned to taxis that have already serviced
one or more requests. This means that the first m̄ requests
after reindexing are serviced by taxis that were originally at
their initial locations before any assignment. The rest of the
requests are then serviced by taxis that were originally at the
dropoff location of their previously serviced request before
any assignment. We can therefore, rewrite Z as follows:

Zπbase,T =

m̄∑
a=1

Wa,πbase +

RT∑
b=m̄+1

Wb,πbase

Where, we have Wa,π̂ = d(la,πbase , ρa)+d(ρa, δa). Similarly,
Wb,π̂ = d(lb,πbase , ρb) + d(ρb, δb). Random variable la,πbase

depends on the distribution of initial locations of the taxis
pξ, while random variable lb,πbase depends on the distribution
of drop-offs for the requests pδ .



We are interested in finding an asymptotic lower bound
for E[Zπbase,T /T ].We first consider:

E

[
Zπbase,T

T

]
(1)
= E

[
1

T

(
m̄∑

a=1

Wa,πbase +

RT∑
b=m̄+1

Wb,πbase

)]
(2)
= E

[
E

[
1

T

m̄∑
a=1

Wa,πbase

∣∣∣∣∣m̄
]]

+ E

[
E

[
1

T

RT∑
b=m̄+1

Wb,πbase

∣∣∣∣∣RT , m̄

]]
(3)
= E

[
1

T

m̄∑
a=1

E[Wa,πbase |m̄]

]

+ E

[
1

T

RT∑
b=m̄+1

E [Wb,πbase |RT , m̄]

]

Where equality (1) comes from the definition of Zπbase,T ,
equality (2) comes from linearity of expectations and the law
of total expectations, and equality (3) comes from linearity
of expectations and from the fact that given RT and m̄, the
conditional expectation can be moved inside the summation.

We define d̄BMP(ξ,ρ,m̄) and d̄BMP(δ,ρ,RT ) as the average
lengths for the optimal solutions of the bipartite matching
problem (BMP) for a fleet size of m̄ and RT taxis, respec-
tively, origins distributed according to probability distribu-
tions pξ and pδ , respectively, and destinations distributed
according to pρ. Similarly, we define d̄EBMP(ξ,ρ,m̄) and
d̄BMP(δ,ρ,RT ) as the average lengths for the optimal solutions
of the euclidean bipartite matching problem (EBMP) for a
fleet size of m̄ and RT taxis, respectively, origins distributed
according to probability distributions pξ and pδ , respec-
tively, and destinations distributed according to pρ. Since
d̄BMP(ξ,ρ,m̄) is defined as the shortest path in the city graph
between matched origins and destinations, we can easily see
that this quantity can be lower bounded by d̄EBMP(ξ,ρ,m̄) such
that d̄BMP(ξ,ρ,m̄) ≥ d̄EBMP(ξ,ρ,m̄). Using this fact, we can
lower bound E[Wa,πbase |m̄] as follows:

E[Wa,πbase |m̄]
(1)
= E[d(la,πbase , ρa) + d(ρa, δa)|m̄]

(2)
= E[d(la,πbase , ρa)|m̄] + E[d(ρ, δ)]

(3)

≥ d̄BMP(ξ,ρ,m̄) + E[d(ρ, δ)]

(4)

≥ d̄EBMP(ξ,ρ,m̄) + E[d(ρ, δ)]

= DEBMP(ξ, ρ, m̄, δ) (5)

With DEBMP(ξ, ρ, m̄, δ) ≜ d̄EBMP(ξ,ρ,m̄) + E[d(ρ, δ)]. Equal-
ity (1) comes from the definition of Wa,πbase ; equality (2)
comes from linearity of expectations and the fact that ρa
and δa have the same distribution as ρ and δ, respectively,
and they do not depend on m̄; inequality (3) comes from
the fact that since BMP assumes that all requests enter
the system at time 0, obtaining a solution for this problem
results in a smaller distance traveled than when requests
enter the system at different time steps and hence taxis need

to be reassigned; inequality (4) comes from the fact that
d̄BMP(ξ,ρ,m̄) ≥ d̄EBMP(ξ,ρ,m̄) as explained above.

Similarly, we can lower bound E [Wb,πbase |RT , m̄] for any
b > m̄ as follows:

E[Wb,πbase |RT , m̄]
(1)
= E[d(lb,πbase , ρb) + d(ρb, δb)|RT , m̄]

(2)
= E[d(lb,πbase , ρb)|RT , m̄] + E[d(ρ, δ)]

(3)

≥ d̄BMP(δ,ρ,RT−m̄) + E[d(ρ, δ)]

(4)

≥ d̄EBMP(δ,ρ,RT−m̄) + E[d(ρ, δ)]

= DEBMP(δ, ρ,RT − m̄, δ), (6)

where DEBMP(δ, ρ,RT − m̄, δ) = d̄EBMP(δ,ρ,RT−m̄) +
E[d(ρ, δ)]. Equality (1) comes from the definition of Wb,πbase ;
equality (2) comes from linearity of expectations and the
fact that ρb and δb have the same distribution as ρ and δ,
respectively, and they do not depend on RT or m̄; inequality
(3) comes from the fact that since BMP assumes that all
requests enter the system at time 0, obtaining a solution
for this problem results in a smaller distance traveled than
when requests enter the system at different time steps and
hence taxis need to be reassigned; inequality (4) comes
from the fact that the euclidean distance is not constrained
to the structure of the graph and hence d̄BMP(δ,ρ,RT−m̄) ≥
d̄EBMP(δ,ρ,RT−m̄).

Using these two lower bounds, we get:

E

[
Zπbase,T

T

]
(1)

≥ E

[
1

T

m̄∑
a=1

DEBMP(ξ, ρ, m̄, δ)

]

+ E

[
1

T

RT∑
b=m̄+1

DEBMP(δ, ρ,RT − m̄, δ)

]
= E

[m̄
T
DEBMP(ξ, ρ, m̄, δ)

]
+ E

[
1

T
(RT − m̄)DEBMP(δ, ρ,RT − m̄, δ)

]
(2)
= E

[m̄
T
DEBMP(ξ, ρ, m̄, δ)

]
− E

[m̄
T
DEBMP(δ, ρ,RT − m̄, δ)

]
+ E

[
1

T

(
T∑

t=1

ηt

)
DEBMP(δ, ρ,RT − m̄, δ)

]
(7)

where inequality (1) comes from the application of the
bounds in Equation 5 and Equation 6, and equality (2) comes
from linearity of expectations and the definition of RT .

Now, if we take the limit as T → ∞ on both sides, we



get the following:

lim
T→∞

E

[
Zπbase,T

T

]
(1)

≥ lim
T→∞

[E
[m̄
T
DEBMP(ξ, ρ, m̄, δ)

]
− E[

m̄

T
DEBMP(δ, ρ,RT − m̄, δ)]

+ E

[
1

T

(
T∑

t=1

ηt

)
DEBMP(δ, ρ,RT − m̄, δ)

]
]

(2)

≥ lim inf
T→∞

[E
[m̄
T
DEBMP(ξ, ρ, m̄, δ)

]
− E[

m̄

T
DEBMP(δ, ρ,RT − m̄, δ)]

+ E

[
1

T

(
T∑

t=1

ηt

)
DEBMP(δ, ρ,RT − m̄, δ)

]
]

(3)

≥ E
[
lim inf
T→∞

m̄

T
DEBMP(ξ, ρ, m̄, δ)

]
− E

[
lim inf
T→∞

m̄

T
DEBMP(δ, ρ,RT − m̄, δ)

]
+ E

[
lim inf
T→∞

(
T∑

t=1

ηt
T

)
DEBMP(δ, ρ,RT − m̄, δ)

]
(4)
= E

[
lim inf
T→∞

(
T∑

t=1

ηt
T

)
DEBMP(δ, ρ,RT − m̄, δ)

]
(5)
= E[η]E

[
lim inf
T→∞

DEBMP(δ, ρ,RT − m̄, δ)
]

(6)

≥ E[η] · (WD(pδ, pρ) + E[d(ρ, δ)])

= E[η] ·Dmin

where inequality (1) comes from the application of the limit
to Equation 7; inequality (2) comes from the definition of
lim inf; inequality (3) comes from the application of Fatou’s
lemma; equality (4) comes from the fact that the first two
terms go to zero as T →∞ since and m̄ is upper bounded
by a constant mcap and DEBMP is also upper bounded by
a constant, more specifically the sum of E[d(ρ, δ)] and
the generalized diameter of the euclidean region where the
requests are being picked up; equality (5) comes from the
law of large numbers which, since ηt are i.i.d, results in
lim infT→∞

1
T

(∑T
t=1 ηt

)
= E[η]; inequality (6) comes

from the analytical results presented in [19] where they
show that lim infT→∞DEBMP(δ, ρ,RT , δ) ≥ WD(pδ, pρ) +
E[d(ρ, δ)], where WD(pδ, pρ) corresponds to the Wasser-
stein distance required to transform pδ into pρ distribution.
This lower bound does no longer depend on η or m̄ and
hence can be moved out of the expectation. The last equality
comes from the definition Dmin ≜ WD(pδ, pρ)+E[d(ρ, δ)].

Now, we can finally conclude that E
[
Zπbase,T

T

]
as T →∞

is lower bounded by E[η]·Dmin, and hence if m ≤ E[η]·Dmin,
the policy πbase is asymptotically unstable since m · T ≤
E [Zπbase,T ] as T →∞.

V. NUMERICAL STUDIES

In this section we evaluate the performance of our algo-
rithm using a real taxi data set for the city of San Francisco
[26]. We compare the performance of our algorithm against
three benchmarks: a greedy policy, instantaneous assignment
with reassignment (IA-RA), and a rollout-based algorithm
over the entire map as proposed in [12]. We provide a
comparison of run-time of our two phased approach and the
rollout-based approach [12] to empirically verify the reduc-
tion in run-time associated with our two-phase approach. We
verify our theoretical results in the number of taxis in the
fleet required for stability by executing our algorithm for
larger time horizons and plotting the number of outstanding
requests at each time step. We empirically verify that for m
chosen in the range given by Theorem 1, and Theorem 2,
our proposed approach is stable in the sense that the number
of outstanding requests is uniformly bounded over time.

A. Experimental Setup

Our numerical results consider a section of 1500m ×
1500m in San Francisco (see Fig. 1) with 859 nodes and
1959 edges. For the comparison studies we consider a
horizon length of T = 60, while for the stability results
we consider T = 180. All experiments were executed in
an AMD Threadripper PRO WRX80. All individual results
correspond to an average over 20 different trials with differ-
ent instantiations of the random variables for the number of
requests η, pickup locations ρ,, dropoff locations δ, and the
initial locations of the taxis ξ.

B. Estimating probability distributions

For our experiments, we estimate p̃η , p̃ρ|η , and p̃δ using
historical trip data from several taxis in San Francisco [26].
We divide the historical data in 1-hour intervals, where each
time step t spans 1 minute. We empirically estimate p̃η by
using the number of requests that arrive at each time step
within each 1-hour time span. The distributions p̃ρ and p̃δ|ρ
are derived from the relative frequency of historical requests
that originated and ended inside the map section. We estimate
p̃δ|ρ using relative frequency of pickup-dropoff pairs.

C. Calculated values for theoretical results

For our experiments, we consider p̃η for an hour in
which E[η] = 1 (we get around 60 requests per hour).
For simplicity, we assume that ξ is distributed according
to the marginal probability distribution pδ , and hence we
find that E[d(ξ, ρ)] ≈ 15. We use plrand and pρ to calcu-
late E[d(lrand, ρ)] ≈ 13. We use pρ and pδ|ρ to calculate
E[d(ρ, δ)] ≈ 15. From this we get that the sufficient
number of taxis for stability of our two-phase approach
is m > max(15, 13) + 15 = 30 from Theorem 1. We
approximate the Wasserstein distance WD(δ, ρ) using the
procedure suggested in [20]. We obtain WD(δ, ρ) ≈ 1.87.
From this, we get that asymptotically, the minimum number
of taxis needed for stability as T → ∞ is m > 1.87 + 15,
rounding to next integer m ≥ 17 from Theorem 2.



D. Implementation details for two-phase approach

We execute 2000 Monte-Carlo simulations with certainty
equivalence to approximate the expected cost associated with
each potential action in the one-step lookahead step of the
rollout for the local planner. We also consider a planning
horizon th = 10 for the rollout, and a capacity of mlim =
10 taxis per sector, based on the computational resources
available.

E. Benchmarks

In this section, we discuss the details of the benchmarks
to be used as comparisons for our performance results.

Greedy policy: moves taxis to their respective closest
requests without any coordination across taxis. This method
does not consider future demand.

Instantaneous assignment (IA-RA): performs a deter-
ministic matching of outstanding requests and available taxis
without considering future requests. It solves a matching
problem between available taxis and outstanding requests at
every time step using an auction algorithm [27], [23].

One-at-a-time rollout-based global routing: performs
rollout over the entire map using the procedure described
in the scalability section of [12]. This method considers
expected future demand.

F. Performance results

This section includes the results for the performance and
the execution time of our two-phase approach.

As shown in Fig. 3, our method results in a comparable
performance to the rollout-based global routing [12]. For
lower number of taxis, when m < 17, our method is unstable.
After we surpass 17 taxis, standard IA-RA starts being
stable for a larger proportion of the trials and our method
starts performing similarly to the rollout-based global routing
[12]. As shown in the graphs, for m > 30, our proposed
method results in a lower cost than IA-RA, resulting in a
5% to 18% improvement, sometimes even outperforming the
rollout-based global routing thanks to the smaller sampling
space associated with each sector. Since both rollout-based
methods are running the same number of MC simulations,
a smaller sample space leads to better approximation of the
expectation.

To better understand the advantages of our proposed
method, we compare the execution time of our proposed two-
phase approach to the rollout-based global routing. Fig. 4
shows our method results in significantly lower run-times
than the rollout-based global routing, slowly increasing the
execution time as the number of taxis in the fleet increases.
The execution time eventually plateaus once the load in
each sector becomes similar. This shows that partitioning the
map and solving sub-problems in parallel results in a faster
execution with similar total wait time to the global rollout.

G. Stability of two-phase approach

Fig. 5 shows the stability results of our two-phased ap-
proach with various number of taxis over a horizon of 3
hours. Without enough taxis, m < 17, for which the the

Fig. 3. Total wait time over all requests of our two phase approach and
the benchmarks.

Fig. 4. Execution time comparison of policies, including two-phase
approach and one-at-a-time rollout over the entire map.

IA-RA policy is shown to be unstable, our approach shows
an increasing number of outstanding requests over time.
However, with sufficient number of taxis (m = 25, 35), we
see that both the IA-RA policy and our two phased approach
has a bounded number of outstanding requests over a large
horizon of 180 minutes.

VI. CONCLUSION

In this paper, we propose a multiagent scalable rollout-
based two phase algorithm for taxi pickup-routing problem
on a large map and a large demand with a user defined upper
bound on the number of agents to plan for simultaneously.
We provide a necessary and a sufficient conditions for the
total fleet size m to make the instantaneous assignment base
policy stable, which is key to guarantee rollout’s convergence

Fig. 5. Stability in terms of the means (lines) and standard
deviations (shared regions) of the number of outstanding requests
for our two phase policy and the IA-RA (base policy) over 3 hours.



to a near-optimal policy. Our numerical results show that our
two-phase approach approximates the standard one-at-a-time
rollout with a much smaller computation cost when m sat-
isfies conditions calculated analytically. As future work, we
want to tackle large urban mobility problem with changing
traffic conditions.
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