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Abstract In this paper we present a decentralized gradient-basedbtienthat op-
timizes communication between mobile aerial vehicles aamtibmiary ground sensor
vehicles in an environment with infeasible regions. Therfolation of our problem
as a MIQP is easily implementable, and we show that the aadifia scaling matrix
can improve the range of attainable converged solutionsitiyeincing trajectories
to move around infeasible regions. We demonstrate the tobss of the controller
in 3D simulation with agent failure, and in 10 trials of a nnagent hardware ex-
periment with quadrotors and ground sensors in an indodramment. Lastly, we
provide analytical guarantees that our controller s¥rigtinimizes a nonconvex cost
along agent trajectories, a desirable property for gematdii-agent coordination
tasks.

1 Introduction

Decentralized control of robotic systems has enabled cexagoup behaviors such
as rendezvous, formation keeping and coverage to be appleedide range of en-
gineering problems; however, the absence of centralizegatation increases the
demands on communication quality [1-4]. This paper focusethe problem of
optimizing communication quality between a multi-agerttvoek of mobile robots
and stationary sensors. In previous work [5] we developegtaitralized gradient-
based controller that provably optimizes communicatioali(gpiamongst the net-
work, but this approach is limited to environments wheredhigre space is feasible.
In practical scenarios, such as the indoor environment showigure 1, there of-
ten exist regions of space that are hazardous or untraver&lrh obstacles make
designing the controller difficult for two main reasons: 1§ goal state, or optimal
communication configuration, is unknowrpriori and 2) the presence of infeasible
regions introduce many constrained local minima that malese satisfactory so-
lutions. This work uses nonlinear optimization techniqieederive a decentralized
controller that is easy to implement and addresses the garobf communication
optimization in the presence of infeasible regions.
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Fig. 1 Multi-agent field test environment with Ascending TechmyldPelican quadrotors (solid
outlines) and stationary ground sensors (dashed outlimésasible regions include the wall in the
center of the room, an open staircase that is partially b the right, and a table (out of view).

The introduction of infeasible regions raises many chalésn The cost for the
communication optimization problem is nonconvex which isegessary property
of many interesting distributed tasks [6]. Therefore we &insimple-to-implement
controllers that have the desired properties of scalgpitiance only on local in-
formation, and that descend the cost along the trajectofieach agent. Gradient-
based controllers are thus ideally suited. However, thegmee of infeasible regions
breaks up the free space into several sets over which we mtistine, introducing
challenges both for convergence, and for the quality of thheverged solution. As
an example, an aerial vehicle may get “stuck” behind a wai thcould easily fly
around if the direction of steepest descent of the cost hepfebe perpendicular
to the obstacle edge as illustrated in Figure 2.b, and so we teeconsider a wider
range of descent directions to avoid these scenarios. Asudt i gradient-based
optimization over a nonconvex environment, achievable/eagence is either to a
critical point of the cost in the best case, or to a point ofriawed cost on the edge
of an infeasible region. Our aim is to derive a controllertstiat agents descend the
cost along the generated trajectories, and where thesettags are biased towards
directions that avoid infeasible regions and thus havegetaange of attainable im-
proved cost solutions.

The use of gradient projection methods from nonlinear ogation [7] allows
us to formulate our nonconvex problem as a simple quadratigrem where the
constraint set is a convex subset of the free space in theomment. We use the
solution of a mixed integer program to effectively selee ttonvex feasible region
over which we optimize our cost and the result is a mixed ietegiadratic program
(MIQP) that can be solved efficiently for each agent. We shmat the addition of
a scaling matrix, that preserves the quadratic and thusesftig solvable attributes
of the problem, allows the designer to influence vehicletfries to move around
infeasible regions and improve the range of attainable @@®ad solutions. In par-
ticular, in Section 3.2.1 we derive analytical resultstiaathe heading angle to the
steepest descent direction for a chosen scaling matrixywanghow that we retain
descent of the cost. Theorem 3 shows the existence of a sezjokscaling matrices
such that our algorithm produces trajectories reachin@usicained local minima
of the communication cost, if such a trajectory exists fa dgfiven initial positions
and environment. Although the derivation of a sequence alireg matrices that
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guarantees convergence to unconstrained local minimaafdkt remains an open
guestion, in the Results Section we provide a heuristicteleof scaling matrices
that demonstrates good performance in simulation and reasdexperiments.
Section 4.1 presents our communication optimization @gor and demon-
strates the performance of the controller and its robustireshe case of agent
failure. Lastly, in Section 4.2 we demonstrate our contreitimd on real aerial
vehicles that must navigate through an indoor environmieigufe 1) to optimize
communication amongst a network of three stationary graeticles.

1.1 Related Work

Artificial potential fields for obstacle avoidance as in [8};1decomposition of
the environment using different notions of a graph throudtctv to search the
space [11, 12], and shortest path methods as in [13], reprastve areas of re-
search for the problem of vehicle coordination in environtsevith obstacles. In
the current work, final positions of the agents are local maiof the communi-
cation cost and since this cost must be optimized iteratitbese local minima
areunknown a priori Therefore we cannot assume knowledge of final goal states
that we can navigate towards, and we cannot disallow miniora being inside of
infeasible regions.

The characteristic that the optimization problem itseffimies the agent trajec-
tories makes this problem particularly challenging. Thpgrd14] also addresses a
multi-agent optimization problem but for coverage of a 2Dimmment and uses a
clever mapping inversion. Methods similar in spirit to ousrlv are Mixed Integer
Methods as in [15, 16], although these methods are diffenethtat they also con-
sider navigation to known goal states. For our work we musi descend the cost
along agent trajectories as convergence to local minimasoédst and maintenance
of connectivity for the network hinge on this requiremeriu$ a strong motivation
for this work is to ensure that descent of the cost is achieweshch iteration. The
requirement of provably descending the cost along vehigjedtories is common
for many coordination tasks and thus illustrates the gditecd the communication
optimization problem to other multi-agent tasks [2—4].

2 Problem Formulation

In previous work [5], we derived a cost function that optisEzommunication qual-
ity among aerial vehicles and ground sensors. This costuS&mal to Interference
ratio (SIR) to weigh communication strength of a pair of wis against interfer-
ence from neighboring vehicles and is a weighted sum of twogevhere the first
term maximizes the SIR of each individual link and the secmmnoh equalizes SIR
over all links. The resulting behavior of the controller ss@gned by increasing or
decreasing, which is a scalar that assigns more or less weight to thenskisom
in the cost.

The costH : R(P*N) —; R is defined over all vehicle positiond; € RP for N
vehicles at iteratiof as:

K Koy N N
H(Xl7...,XN)—Z SlRJ
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wherei andj is shorthand for vehicles with positiogsandx; respectively, and is
an arbitrarily small positive number to allo8iRj = 0. The Signal-to-Interference

Ratio (SIR) : RP — R is given bySIR; = W
' iy

tween two communicating agenitsand j is given by fi; : RP — R. The signal

strength is given byfijj = :—g. All vehicles in the neighborhood afnot including
ij

j is denoted 4, j, Py € R is a given maximum signal strengtfl,is a given dropoff

parameter and oftefi = 2, andd;j = ||x — x;||.

and the signal strength be-

2.1 Communication Optimization asa MI QP

We wish to moveN agents along trajectories that descend the igst) from (1),
wherexX € RPN s the vector of all vehicle positions at tinkewhile constraining
this trajectory to remain outside of infeasible regionsdttime. For each vehicle

i with position x}‘ € RP at iterationk, we wish to move an amoust > 0 along
the direction of steepest desceni]H (x), but we must enforce the constraint to
stay within free space. The valiigH (xX) € RP is the gradient of the co$t with
respect to the position of vehicle at timek and we note that although the cost is
global, the derivativél;H (x) depends only otocal information and is distributed
in this sense. We subsequently drop the substctipsimplify notation so that* is
the position of vehiclé andOH (x¥) refers to the gradient ¢fl with respect to the
position of agent.

Gradient projection methods from nonlinear optimizatitiova us to formulate
descent for our nonconvex cost while maintaining the caigttof staying a convex
set. Because the free space of the environment is almost nemgex we must
divide the free space set into the intersection of many cosegts, which is possible
in particular for environments with convex polygonal infdde regions which is
the case that we consider. We take advantage of the factdbhtagent needs to
optimizeH only over its local environment and employ a mixed integegpam to
activate a local convex subset of the free space over whiatewgerform gradient
projection. The result is a Mixed Integer Quadratic Prog(&HQP):

sl o—smit| .
st. Ax<b +tM, vle{d,...,L}

E
Zt” <E-1,Vvle{1..,L}
=1

€ {0,1} Vj,I

wheres’ is a scalar> 0, L is the number of polygonal infeasible regions in the envi-
ronmentE, is the number of edges for infeasible regloM is a sufficiently large
scalar, and; € R is a binary column vector returned by the MIQP for each infea-
sible region, andy € RE*P) b ¢ R® describe the convex,polygonal, infeasible
regions as defined next. We now provide the mathematicatigésos of infeasi-
ble regions and free space sets returned as solutions fl@MIQP:
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Definition 1 Infeasible Regions and Free Space Sets: Infeasible regionare con-
vex, polygonal sets that are the intersection phEIfspaceﬂE:'1 (Aix>by). A ve-
hicle may not move through an infeasible region but we asston@munication
strength is not affected. The binary column vectors f(@jrencode feasible region
constraints and thus a particular solution of binary variabt* € R'® effectively
“activates” one or more edges of each infeasible region stiwt these selected
edges are the valid constraints enforced in solving the MIQ intersection of
the halfspaces corresponding to the activated obstaclegalways a closed and
convex set denoted

Xepe = X (1) = {X|AX < by + M} )

where X% (t*) is the closed, convexee space subsebrresponding to the binary
variable solution t of Equation(2).

The intuition for the formulation in Equation (2) is that &éagehicle moves as far
along the direction of steepest descent of the Elogs possible while staying within
feasible space. The problem with this formulation howeigethat if the direction

of steepest descent becomes perpendicular to the edgerdgéasible region then it
is possible to get stuck behind this edge even in the caseawheivehicle may be
able to easily go around the obstacle by moving along a dédaewtion that is not

that of steepest descent, see Figure 2.b. We address thiepro the formulation

of the next section.

2.2 Use of Scaling to Avoid Regions of I nfeasibility

The MIQP formulation from the last section can be solved ieffity using off-the-
shelf optimizers, and results in a very simple form of a coligr but suffers from
the limitation of always following the steepest descenédtion, even in the case
where this direction is obstructed by an infeasible regidms, we wish to improve
the range of attainable solutions while conserving the Baity of the MIQP from
the previous section. To this aim we propose use olttadedgradient projection
method.

In nonlinear optimization theory the scaled gradient prtiggn method is often
used to improve rate of convergence [7]. Our objective, hanés to influence the
vehicle trajectory towards directions that are not perj@ndr to active constraint
edges. In addition, the scaled gradient projection methoalets to the addition of
a term that is quadratic in the optimization variakland thus is also a quadratic
program as in the previous case and can be easily solved. fikie denew problem
whose optimization results in a feasible waypod@fo_r agent (wherei subscripts
are dropped):

>?§:argrr)1(ion—zkHs( 4)

s.LAX< b +tM VI
E
Zt” <E-1Vvlel,...L
=1

t|j 6{0,1} Vj,'
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where the matrix € RP*P is a positive definite matrix, and we use the notation
|9/l = 9'Sq Vg € RP to represent the scaled norm. For this scaled formulation,
the desired waypoint is

K =xK— (S 1OH (X (5)
A more compact definition of (4) can be written using the reprgation of the
free space set from (3) for each vector of binary variatiglsat solve (4):

Zk_XHsk ©)

_k .
Xg=arg min
S gxexp(t*)

The position update rule fo&*1 is given by:

XL — XK (3 — XK) = K+ akd @)

Where the stepsizes ands< satisfy Assumption 1:

Assumption 1 There exist stepsizes‘ > 0 and & > 0 that are sufficiently small
such that given a descent directiok, @ step along this direction will not intersect
an obstacle and will provide sufficient decrease of the cotteé sense of the Armijo,
or limited minimization rule that are standard in NonlineBrogramming [7]. We
assume thatrk and & satisfy these conditions throughout the paper.

A first order Taylor series expansion of the cost around theeatipoint shows
that descent of the cost is possible for small enough stepdong a valid descent
directiond. In the case that the current iterate is at the edge of andbsthe step-
size would necessarily be zero to avoid intersecting th&aslesand the method will
stop. The requirement th&f is positive definite is necessary to maintain descent of
the cosH (xk*1) < H(x¥). In effect, our next waypoint** will minimize distance
in the sense of the scaled norm to our desired wayEbiff]. See Figure 2.

We define the descent directiaf = x§ — x. The advantage is that now we
can steer our trajectory to any heading relative to the toeof steepest descent
—[OH(X¥), as long as this direction satisfigé= { (x& —x¥)| (x§ —x¥)'0H (x¥) < 0}
wherex'y is the dot product of a vectorand a vectoy, and the achieved relative
heading angl® depicted in Figure 2 is defined as:

(~OH () d¥ }

6 =arccoy ———————
[[OH )| [[d¥|

(8
We use this flexibility to assign preference to paths that@gtclear regions of

infeasibility that are in the direction of the negative gead. In Section 3 we derive
an analytical relationship betwe&iand®6.

3 Analysis
3.1 Analysis of the Unscaled Controller

We show that the sequence of vehicle positions produced éytiQP, in com-
bination with the update rule from (7) produces strict dasckrections such that
H(x**1) < H(xX) for all k for stepsizes satisfying Assumption 1. Proving descent
of the cost, such that (x+1) — H(xk) < 0, is made challenging by the general
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non-uniqueness of the solution for the binary variallés Equation (2). This in
turn means that the convex subset over which we perform ggation may not be
unique and may not contain the current itepdtevhich makes the classical descent
proof for gradient projection methods not applicable.

From the result asserting that the cost is reduced at eactidte, and the fact
that the local minima offf are finite as shown in previous work, [5], we expect con-
vergence to a fixed point. This fixed point can either be at tigeef an infeasible
region where the projectioxt = x* (stationary) as defined in Lemma 1.4 or can be
a critical point of the costl. In the following section we show how scaling can be
used to decrease the likelihood of getting “stuck” at the siflan infeasible region.

We use the concept of a vectbeinggradient-related

Definition 2 Gradient Related: A bounded direction sequenfe®}yc  is gradient-
related to any subsequen¢e‘}yc - that converges to a nonstationary point, if:
im supdH (x¥)'d(X) < 0 Yk e .7

|
koo ek

We use the following properties of projection from [7]:

Lemma 1 (Properties of the projection onto a convex seX) Let X be nonempty,
closed and convex, and It denote the projection ofz RP onto X:

1. The projection of z RP exists, is unique, and minimizgs— x|| over xe X.
2. Itmust hold thatz— [Z1)'(x—[Z7) <0, ¥xe X

3. The projection function is continuous.

4. We havel = [X— sH (X)] T for all s > 0iiff X is stationary.

We now seek to show that th# produced by the solution to (2) are gradient-
relatked for allk and thus for stepsizes satisfying Assumption 1 we hapet!) —
H(x*) < 0.

Theorem 1 For the cost H that is differentiable everywhere, the segeent di-
rections{d} produced by solving the MIQP formulation and using the mled
update rule from(7) are directions of descent of the cost such that they satigfy t
gradient related property for pointsthat are not stationary points of the cost.

Proof. The proof is identical to that of Theorem 2 with the scalingnimaset to the
identitySK=1. O

3.2 Analysis of the Scaled Gradient Projection Method for
Avoidance of I nfeasible Regions

We provide analytical results for three main problems esgldb the scaled version
of the MIQP (4). First, we relate the scaling mat#xto the relative heading angte
where this direction is relative to the direction of steeplescent. Second, we show
that the use of a scaling matrix generates trajectoriesdfoln egent over which the
cost is descended at each iteration. Lastly, we show thee thests a sequend&}

of scaling matrices such that our formulation from (4) gates a trajectory con-
verging to the more desirablanconstrainedocal minima ofH if such a trajectory
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exists for the environment. Although the problem of dervsuch a sequence of
scaling matrices remains open, in the Results section wed®ea heuristic method
of generation of scaling matrices that circumvent regidriefeasibility but do not
guarantee convergence to unconstrained local minint& of

3.2.1 Controlling the Relative Heading Angle to Avoid Regias of Infeasibility

In this section we gain insight on how to design the scalingriméo achieve the
desired relative heading angl@, From our discussion in 2.2, we require that the
scaling matrix3* must be a positive definite matrix and with an orthonormalaio

of eigenvectors; € RP we can writeS¢ in a decomposed forng = VAVT.V =
[V1,...,Vp| is @ matrix of eigenvectors & andA € RP*P is a diagonal matrix

of eigenvaluegAy,...,Ap} of . Furthermore we know that that &| > 0 since

S is positive definite. Therefore we can write any vectoRP, in particular the
negative gradient vecterJH (xi), as a linear combination of the's. In particular,

we can write—[OH (xx) = Zip:1 ¢V where(; are scalars representing the component
of —OH(xX) in the direction ofv;, and we consider normalized eigenvectors such
that||vi|| = 1. By the Pythagorean theorem, and the fact thatfege orthogonal,
we have that

HDH H = 21 Z|V| ZIVI) ZL(G)Z 9)

We denote the unprojected heading directdfn and note that this sl =
— X4 for the scaled gradient projection. From (5) we see thatithisimply
Lk )~ 0OH (x). If we again use Pythagorean Theorem to write the expre$sion
d¥||, and the dot produdiH (x¥)'d¥ we get:

w2 llge L i zpl
or-pgief wgie

= p@)z-z (11)
_SKi;l A

Using the definition of the dot product and the definitions)(101), and (9), we
get an expression relating the relative heading afigie the scaling matrixs via
its eigenvectors and eigenvalues:

(~OH(x))d< _ S8
e \/ (SPa(h2e?) (224(@)2)

This expression shows that the scaling matrix can be designachieve a spe-
cific relative heading angle by careful choice of its eigatwes and eigenvalues. In
particular we notice that iS¢ = | wherel is the identity matrix and; = 1 Vi, then
cogq0) = 1, the heading angle is zero and we move in the direction eps& de-
scent as expected. Alternatively, putting a larger weighthe eigenvalued; of &
such thatA; >> A, Vj # i, will achieve the effect of causing the heading direction

cog0) = (12)
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d to align itself most with the component ef JH (xX) alongv;. See Figure 2 for a
schematic of a two dimensional case. However, as the raflp@dts larger, rate of
convergence becomes slower so in general the heading @steuld not be made
larger than necessary.

Contours for Scaled MIQP . .
Infeasible region - —

\ Scaling direction|. - -

N P B Ground sensor N 7 [

, z movement 0,0 NANNNY NV VL

/ xcommveh [N\ B

/ as A, 0 S | |—>Gradientvector field >~ 0N vV v

, <”, e .T f NN NN NV

I’ & (o) !’ajecory N, N N Y Y Y T T I )

/ [ W < | |@Final pos comm vehl A~ > Ny v v v

v/ " movement |[Z| £ N NN

v Pt PR 2 0 SSsSssN\L g

v, as 4 2 S Y

————— d -~

¥ TTToe-n o Dteepest Descent -2 Possible
B o 5 lconstrained solution
X(m)

(a) Schematic. (b) Simulation using scaled MIQP (4).

Fig. 2 Schematic showing the scaled direction and heading atgled the change of heading
direction as the eigenvalues 8fare changed 3(a). Simulation of basic scenario showingttlity u
of scaling to avoid getting stuck behind the wall as in 3(®ré¢] a constant scaling mat@ = Sis
used. When the scaled direction reaches a perpendiculle @rtipe gradient,the trajectory moves
along the steepest descent direction as discussed in 3.2.1.

Lastly, a result of (12) is that the directiaff can never be perpendicular to the
negative gradient for a positive definite scaling masfx As the eigenvectoy,
approaches the perpendicular direction-tdH (x), the component of the negative
gradient vector along this directigh — 0 and thus, as seen from Equation (i),
cannot be made to move in a direction that is perpendiculaiisl (xX).

3.2.2 Analysis for the Scaled Gradient Projection Method
In the last Section we showed that the addition of a scalingim& allows us the

flexibility to design the relative heading angle to avoidioeg of infeasibility in the
environment. We now show that the resulting directidks= X§ — x* wherex§ is
solved for from Equation (4), are descent directions suel tife cost is reduced
over agent trajectories. As in the unscaled case, findingeméslirectionsi® for
our problem is made challening due to the general non-unieggeof the binary
variables in (4). From the definition of gradient relatednéke desired property
we wish to show is thaflH (x¥)'dk < 0 for all k and all solutionsi* at iterationk.
The intuition for our proof method is to use the solutifiwhich is defined for the
convex subset containing the current iterate and which eashbwn to always be
gradient related, to bound all other solutiatfsthat result from different solutions
for the binary variables. From here we can show thit(x)'d¥ < 0 for all df and
k.Using the result ofi* being gradient related for &l combined with Assumption
1, we get descent of the cost at each iteration suchHiet™) < H(x¥).
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To avoid cumbersome notation, we subsequently drof subscript from('gand

the reader should assume all projectighin this section are scaled projections. We
refer to a poinkX as not stationary if it is not equal to its projection such #faZ xX.

Theorem 2 For the cost H: R(P*N) —; R that is differentiable everywhere, denoting
the sequence of vehicle position&} produced by solving the scaled MIQP formu-
lation in (4) and using the provided update rule frdi), we have that all directions
dk are directions of descent of the cost such that they safigfygtadient related
property for all X not stationary.

Proof. We denote the set containing the current iterétasx.:l, and the projection

of Z onto Xr, asx*l( and note that this is a solution of the scaled MIQP (6) over
the setXr,. From Lemma 1.2 generalized to scaled projections, it hiblels(Z< —
XK)' S (xk — %K) < 0 forxX € Xg, andxt € Xg,. Expanding out this property and using
the definition ofZ, continuity of the projection, and the fact that we are cdesng
projection onto a single sék, containing the current iteraté,we have that for all

k (see [7]): 2
skDH(xk)/(ﬂ—xk)Jerk—ﬁHg <0, vk (13)

The term||x< — ﬂ{”é > 0 for all S¢ positive definite and* nonstationary such
thatx® # xX. Thus from (13), and Lemma 1.4, we have:

ka—?;H; > 0 =sKOH () (% — XK < 0. (14)

So that the directiod¥ is always gradient related faf andx¥ in the same convex
subset, wherg is nonstationary. We will use this inequality again latee ®mn to

prove that all directionsi = Xk — x* produced from the solutions of Equation (4)
satisfy:
OH (X4 (XX — ) < 0 vk (15)

Because(‘fls a valid solution to the projection @f ontoXg 4, we know that any

§£Iution,x{k, to the scaled MIQP in (4) must be within the elliptical sefiked by
X3

& = {c|(c—Z)SK(c—Z) <rg}, re:= (X§ — Z)S(xE — ) (16)

Now we can write the gradient related condition that we wisprove as:

—f* =min(—0OH (X)) (% — %) (17)

Xt
st.x €&

Where our desired condition is thatf* > 0 which ensures that the direction
(% — XX) is gradient related. The minimization problem written abs/well-posed
in that f is a continuous function minimized over a compact&eand thus there
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exists a minimum. Furthermore, this problem can be solveddsed form using
Lagrange multipliers to yield the condition:

_f*:_rs+HskDH(xk)H;l>o (18)

If we take this a step further and substitute in the definittoms from (16), multiply
through by (-1), expand, and simplify we get a new form foritrezjuality condition
that we wish to prove:

28K0IH () (XK — X¥) 4 (3 — X' S(xE — x¢) < 0 vk (19)

We compare to the condition (14). From the reasoning showh4) we know
that 2¢0H (x€)’ (X — x¥) < 0 for X§ # x< which is true by the nonstationary assump-
tion. Thus we have that this desired inequality always hatu$all producedX are
descent directions as desired and this completes the prabof.

To gain more intuition notice that the condition in Equat{@®) is equivalent to
requiring thatrs = (X — 2S¢ — 2) < rgg = ||SOH (XK)H;—L Intuitively what
this means is that‘{Ts a valid projection of the desired waypoiftwhere the dis-
tance toZ is smaller fromx{ than fromxX in the scaled norm sense, such that
(R — ) SR — 2) < (XK — )k — ),

Because we attain descent of the cost at each iteration, aradtewoptimizing a
continuous function over a compact set so that minima arédeéihed as shown
in [5],we therefore expect convergence to a fixed point. Phiat can be at the edge
of an infeasible region or at a critical point of the costhaligh the use of scaling
aims to circumvent those infeasible regions which do notaiorocal minima in
their interiors.

3.3 Existence of Optimal Sequence of Scaling Matrices

Because we optimize a nonconvex cost, we target convergefmeal minima. For
the case where these local minima are reachable in feagibteeswe consider a
sequence of scaling matricéS‘} to be “optimal” if the controller resulting from
using Algorithm 1 generates trajectories for all vehiclest tonverge to an uncon-
strained local minimum off. The existence problem is to assert that if there exists
such a trajectory for the given environment, then there aldsts a sequence of
scaling matrices such that the trajectory generated byrithgo 1 is optimal. We

do not find such a sequence, this remains an interesting apestign. Instead, we
prove the positive result for the existence problem.

Theorem 3 If 3{g"} — x*uneWhere{dg"} is avalid sequence of waypoints for each
vehicle that converges to an unconstrained local minimtgreof H givenx?, then
3{S} st.{x} — x*une, Where{xX} is the trajectory sequence generated by using
Algorithm 1 for each vehicle. A sequena} is valid if H (g“t1) — H(g¥) < 0 for
allk, g¢ € Xe, Yk where X is the entire feasible region of the environment, and the
stepsize between any consecutive poifitghg?® satisfies Assumption 1 and physical
vehicle limits.

Proof. From Proposition 2 we must satisfy(JH (x)'d* > 0 for allk. From (11) we
see that\j > 0 in order to satisfy this condition. We can wrgé"t — g = 5P av;
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for some appropriate; sinceg“™! — g€ € RP and the eigenvectors & spanRP.
Since by the descent requirement{af} we have—OH (xXX)' (g“t1 — g*) > 0, k,
we can choose orthonormal basis vectgrsf S such thatg; > 0 and¢; > 0 for

all i, where(; are from (9) and thus the choice &f= ?Zi satisfiesA; > 0, Vi and

from the definition ofd* from (10) we see that we can always achidte= g1 —

g¥, vk for this choice ofA. SinceS¥is fully determined through its eigenvectors and
eigenvalues as‘ = VAV’ and we have shown that there exists a sequéstefor
which {d“} = {g“/* — g¥} and thus the resulting sequence of agent posit{ots
reaches the unconstrained local minimumtbff {g¥} reaches the unconstrained
local minimum from given initial positions. O

4 Results
4.1 Algorithm and Simulation Example

In this section we summarize our control method in Algorittinand suggest a
heuristic method for choosing an appropriate scaling m&tfor each vehicle. We
demonstrate our algorithm and the suggested method fonéir&fi via a Matlab
simulation for four communication vehicles and eight grdwensor vehicles in
three-dimensional space (Figure 3).

Algorithm 1 Decentralized Control for Optimized Comms (for aggnt
X =x0 k=0.
while k== 0 OR |x¥*1 —x¥| > tol do
k—k+1
{Compute scalin@ using environment topology, see Algorithim} 2.
{Compute gradient using neighbors of agehtJ;H (xX¥)
{Compute desired waypoiftz< « x¥ — &K(S)~10;H (x¥)
{Compute:}x <soln to (4)
{Compute feasible stepsiz& satisfying Assumption 3.
{Compute new pointk** for agenti using stepsizerk:} x¢1 = xk — ark(xE — x¥).
end while

4.1.1 Heuristic Selection of Scaling MatrixS¢

We suggest one possible method for choosing a scaling n&tfix each vehicle
that is easily implemented and relies solely on map topotbgy islocal to each
agent. We show via simulation, the performance of the regutiptimization and
its adaptive capabilities in the case of agent failures.daah agent, we draw a line
along the direction of steepest descent which is plotteddsealine in Figure 3(a),
call this linegL. Let & be the first infeasible region intersected dly. We wish

to computeS¥ such that we move around, so we compute the projection of the
intersection point onto each of theedges of¢’ and choose the point such that the
chord from the current positioxt to the edge poing* has the largest dot product
—OH(xXX)'(e* — xX). This represents a direction that is as close to the dinectfo
steepest descent as possible but that circumvents thesiinlie@aegion obstructing
this direction. This chord is plotted in red for each agenbsgé steepest descent
direction intersects an infeasible region in Figure 3(a9.\k this chord to compute
the first eigenvector o8¢ so thatv; = (e —x¥)/ || (e —x¥)||, thenv, andvs are
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Fig. 3 (a) Scenario showing infeasible regions and 4 communicat&hicles and 8 ground sen-
sors. (b-d) Adaptive behavior when one communication VeHails (red quadrotor): remaining
vehicles change trajectories to compensate. (b) Cost myaldecreased along agent trajectories.
simply any other unit vectors that are othornormal to eableroand tov;. Finally,
we can set the eigenvalu@s, Az >> A; to attain a directiord® closest to thev;
direction, see discussion in Section 3.2.1 and Figure ¥{&)warn however that
choosing the eigenvalue ratios too large will inverselgetffconvergence rate and
thus this should not, in practice, be made larger than napesEhe matrixS* is
then computed via its eigenvectors and eigenvalueX asVAV’ whereV andA
are defined in Section 3.2.1. If there is no infeasible regiostructing the direction
gL for that vehicle, or there exists no such edge peinso that the dot product
—OH (X4’ (e* —xX) > 0 (this is the case where no circumventing direction produce
descent in the codt), we simply setS¢ = I, wherel is the identity matrix. This
algorithm is summarized in 2. For the simulation in Figure 8setA; = 1,A, =
50,A3 = 50 and achieved satisfactory convergence in an averageQoitdrations
where each iteration took on the order of 0.7 seconds ussn@BLEX for Matlab
toolbox on a 2.4GHz CPU laptop.

4.1.2 Discussion on When to Use Scaling

The use of scaling is most effective when applied at sufftaiéstance from path
obstructing infeasible regions. Since any descent divedtf must be less than per-
pendicular to the negative gradient direction, as a velgiets closer to the edge of
an obstructing infeasible region, the range of descenttiines that can clear the
obstructing region becomes smaller. Therefore we expedingcto perform bet-
ter in environments where there are larger distances betaiestacles, and where



14 Stephanie Gil, Samuel Prentice, Nicholas Roy and DaRieta

Algorithm 2 Heuristic Selection of Scaling Matri& in 3D Using Local Informa-
tion (for agent)
{DefineD: Sensing radius within which infeas. regions can be detefctevehiclei. }
{Define ¢ closest infeas. region in steepest descent direc}ion.
{Definerot(77/2): Rotation matrix byrr/2.}
{Compute a line in direction of negative grgajL = x* — DOIH (x¥).
{ ip « intersection point of gL with closest face of infeasibleicgg()}
if ip # {0} then
{EP «+ all points on edges of’ with smallest distance fronp}
" = maxecep(e— X)'gL
{Compute first orthonormal eigvec 8f:} v; « (e —xK)/(||e" —x¥||)
Vo «— rot(71/2) xvq
V3 4= (V1 X Vo) /([ve x val|)
V < [v1 V2 vg)
{SetA1 << Az,A3 as discussed in Section 3.2.1
A <« diag(A1,A2,A3)
S VAVT
else
{No obstacles in steepest descent direction, set scalimgtaiiy: S « 1}
end if

scaling is applied at the time that an obstructing obstalgeitected as outlined

in Algorithm 2. Theorem 2 shows that as long as the scalingim&¥ is strictly
positive definite X< xX, andxX is not a critical point such thdiH (xXX) # 0, then

the resulting directionX can never be perpendicular to the negative gradient direc-
tion. For an intuitive explanation, consider the two dinenal case and the un-
projected direction® from (10). As one of the eigenvectors8f, sayvi, becomes
perpendicular to-OH (xX), the component of the negative gradient in the direc-
tion of v; approaches zer@; — 0 and—DH(xk) — (V. Therefore the direction

dk= §‘()\—1151V1 + /\—12sz2) - §‘/\—12sz2 which is exactly the negative gradient direc-

tion scaled bysk/\—lz. This means that even if scaling is applied incorrectly @m
perpendicular to the negative gradient), the resultingafion can never be perpen-
dicular and in fact will align with the negative gradienteltion, although, ifA, is

a very large number it is seen that progress along this drebecomes very slow
and convergence rate suffers as discussed in Section Al2dlif the current posi-
tion is at a stationary point where the projectidris equal tox which may occur
at the side of an obstacle, or at a critical point of the costneh-[JH (xX) = 0, the
resulting direction is zero even if nonzero scaling is aghliThis can be seen easily
from the update equatiotf** = x€ + akdX whered® = (XX — xX) which is zero ifx

is stationary, or in free spad¥ = —s¢(S)"10H(xXX) = 0 at a critical point where
OH (X¢) = 0. Therefore the observations thatif)can never be perpendicular to the
direction of steepest descent (and actually approachesdbpest descent direction
if scaling is applied perpendicular to the negative gratjjemd 2) that the direction
d¥ is zero such that the method stops at stationary points tizadrpoints even for
positive scalings # |, and finally that 3) scaling is more effective when applied at
larger distances from path obstructing infeasible regiomgivate our recommenda-
tion of applying scaling for any path obstructing infeasik#gion within the vehicle
sensing radius.
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Cost over 10 Hardware Trials

30 60
Iteration

(b)

Fig. 4 (a) Overhead view of field test scenarie (1Im x 7.5m). Obstacles (pink) and configu-
ration space boundaries (solid lines) overlay a gridmaphefénvironment. Stationary ground
sensorsXsy, Xs2, Xs3) are shown as red squares. The 2 quadrotor trajectoriehanesn teal and
yellow, with initial positions ({}Né}z) and final position$>qf,1,>gf,2) highlighted by blue squares.
(b) Average trial cost and standard deviation averaged tvérials.

4.2 Hardware Experiments

The algorithm was validated in a decentralized hardwaremx@nt with two mo-
bile quadrotor helicopters and three stationary ground@®sn This evaluation was
performed in a known GPS-denied indoor environment withtadiss (the second
floor atrium in the Stata Center at MIT). The hardware plaif@onsisted of As-
cending Technologies Pelican quadrotpesach outfitted with a HokuyoUTM-
30LX laser range-finder and.@Ghz Intel Atom processor (for details see [17]).
Each vehicle performs onboard state estimation and coetrabling completely
autonomous flight. For practical purposes, each quadrotontunicates via WiFi
with a corresponding ground station laptop, where humaatiapd planning pro-
cesses are run. The communication channel between theeasluilground sensors
is simulated. The environment and vehicles are shown inrEigju

Ten trials were run, each starting at the initial configumatshown in Figure 4
(Iabeled><31,x82 for vehicles 1 and 2, respectively). The obstacle positaarover-
layed on the gridmap in pink, and a solid outline denotes thdiguration space
boundaries, oinfeasibleregions. These regions do not impede communication;
rather, they represent unsafe or untraversable regionthignrenvironment these
obstacles were an open staircase, a thin wall, and a tab&e qihdrotors share
real-time pose information and at each control iteratiorl Z@ompute their next
waypoint according to Algorithm 1. The control commandsevertificially throt-
tled at Hz by the waypoint executor. Figure 4 shows the trajectory ohaeehicle
during one trial, and the resulting local minima configuyatto which they con-
verge. Note that vehicle 1 moved around the wall. Vehicletiaily moved towards
the wall, then converged to a point along the obstacle bayrdistributed between
sensors 1 and 3 and vehicle 1. The average duration oveiaddl tvas 65 until
convergence.

Video footageht t p: / / peopl e. csai | . mit. edu/ prentice/isrr2011/

1 Ascending Technologies GmbHt t p: / / www. asct ec. de
2 Hokuyo UTM-30LX Laserht t p: / / ww. hokuyo- aut . j p
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5 Discussion

We have presented a method for communication optimizaticm ieterogeneous
network of aerial and ground vehicles in an environment wifeasible regions us-
ing the communication cost function from previous work [Ble pursue extension
to the general nonsmooth case, and study of the effect ofcleston communica-
tion strength in future work. We have demonstrated bothyically and through
simulation and hardware experiments, the utility of usisgquence of scaling ma-
trices to improve the range of converged solutions by mogingg trajectories that
avoid infeasible regions.
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