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Abstract In this paper we present a decentralized gradient-based controller that op-
timizes communication between mobile aerial vehicles and stationary ground sensor
vehicles in an environment with infeasible regions. The formulation of our problem
as a MIQP is easily implementable, and we show that the addition of a scaling matrix
can improve the range of attainable converged solutions by influencing trajectories
to move around infeasible regions. We demonstrate the robustness of the controller
in 3D simulation with agent failure, and in 10 trials of a multi-agent hardware ex-
periment with quadrotors and ground sensors in an indoor environment. Lastly, we
provide analytical guarantees that our controller strictly minimizes a nonconvex cost
along agent trajectories, a desirable property for generalmulti-agent coordination
tasks.

1 Introduction
Decentralized control of robotic systems has enabled complex group behaviors such
as rendezvous, formation keeping and coverage to be appliedto a wide range of en-
gineering problems; however, the absence of centralized computation increases the
demands on communication quality [1–4]. This paper focuseson the problem of
optimizing communication quality between a multi-agent network of mobile robots
and stationary sensors. In previous work [5] we developed a decentralized gradient-
based controller that provably optimizes communication quality amongst the net-
work, but this approach is limited to environments where theentire space is feasible.
In practical scenarios, such as the indoor environment shown in Figure 1, there of-
ten exist regions of space that are hazardous or untraversable. Such obstacles make
designing the controller difficult for two main reasons: 1) the goal state, or optimal
communication configuration, is unknowna priori and 2) the presence of infeasible
regions introduce many constrained local minima that may beless satisfactory so-
lutions. This work uses nonlinear optimization techniquesto derive a decentralized
controller that is easy to implement and addresses the problem of communication
optimization in the presence of infeasible regions.
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Fig. 1 Multi-agent field test environment with Ascending Technology Pelican quadrotors (solid
outlines) and stationary ground sensors (dashed outlines). Infeasible regions include the wall in the
center of the room, an open staircase that is partially visible on the right, and a table (out of view).

The introduction of infeasible regions raises many challenges. The cost for the
communication optimization problem is nonconvex which is anecessary property
of many interesting distributed tasks [6]. Therefore we aimfor simple-to-implement
controllers that have the desired properties of scalability, reliance only on local in-
formation, and that descend the cost along the trajectoriesof each agent. Gradient-
based controllers are thus ideally suited. However, the presence of infeasible regions
breaks up the free space into several sets over which we must optimize, introducing
challenges both for convergence, and for the quality of the converged solution. As
an example, an aerial vehicle may get “stuck” behind a wall that it could easily fly
around if the direction of steepest descent of the cost happens to be perpendicular
to the obstacle edge as illustrated in Figure 2.b, and so we need to consider a wider
range of descent directions to avoid these scenarios. As a result of gradient-based
optimization over a nonconvex environment, achievable convergence is either to a
critical point of the cost in the best case, or to a point of improved cost on the edge
of an infeasible region. Our aim is to derive a controller such that agents descend the
cost along the generated trajectories, and where these trajectories are biased towards
directions that avoid infeasible regions and thus have a larger range of attainable im-
proved cost solutions.

The use of gradient projection methods from nonlinear optimization [7] allows
us to formulate our nonconvex problem as a simple quadratic program where the
constraint set is a convex subset of the free space in the environment. We use the
solution of a mixed integer program to effectively select the convex feasible region
over which we optimize our cost and the result is a mixed integer quadratic program
(MIQP) that can be solved efficiently for each agent. We show that the addition of
a scaling matrix, that preserves the quadratic and thus efficiently solvable attributes
of the problem, allows the designer to influence vehicle trajectories to move around
infeasible regions and improve the range of attainable converged solutions. In par-
ticular, in Section 3.2.1 we derive analytical results relating the heading angle to the
steepest descent direction for a chosen scaling matrix, andwe show that we retain
descent of the cost. Theorem 3 shows the existence of a sequence of scaling matrices
such that our algorithm produces trajectories reaching unconstrained local minima
of the communication cost, if such a trajectory exists for the given initial positions
and environment. Although the derivation of a sequence of scaling matrices that
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guarantees convergence to unconstrained local minima of the cost remains an open
question, in the Results Section we provide a heuristic selection of scaling matrices
that demonstrates good performance in simulation and hardware experiments.

Section 4.1 presents our communication optimization algorithm and demon-
strates the performance of the controller and its robustness in the case of agent
failure. Lastly, in Section 4.2 we demonstrate our control method on real aerial
vehicles that must navigate through an indoor environment (Figure 1) to optimize
communication amongst a network of three stationary groundvehicles.

1.1 Related Work
Artificial potential fields for obstacle avoidance as in [8–10], decomposition of
the environment using different notions of a graph through which to search the
space [11, 12], and shortest path methods as in [13], represent active areas of re-
search for the problem of vehicle coordination in environments with obstacles. In
the current work, final positions of the agents are local minima of the communi-
cation cost and since this cost must be optimized iteratively, these local minima
areunknown a priori. Therefore we cannot assume knowledge of final goal states
that we can navigate towards, and we cannot disallow minima from being inside of
infeasible regions.

The characteristic that the optimization problem itself defines the agent trajec-
tories makes this problem particularly challenging. The paper [14] also addresses a
multi-agent optimization problem but for coverage of a 2D environment and uses a
clever mapping inversion. Methods similar in spirit to our work are Mixed Integer
Methods as in [15, 16], although these methods are differentin that they also con-
sider navigation to known goal states. For our work we must also descend the cost
along agent trajectories as convergence to local minima of the cost and maintenance
of connectivity for the network hinge on this requirement. Thus a strong motivation
for this work is to ensure that descent of the cost is achievedat each iteration. The
requirement of provably descending the cost along vehicle trajectories is common
for many coordination tasks and thus illustrates the generality of the communication
optimization problem to other multi-agent tasks [2–4].

2 Problem Formulation
In previous work [5], we derived a cost function that optimizes communication qual-
ity among aerial vehicles and ground sensors. This cost usesa Signal to Interference
ratio (SIR) to weigh communication strength of a pair of vehicles against interfer-
ence from neighboring vehicles and is a weighted sum of two terms where the first
term maximizes the SIR of each individual link and the secondterm equalizes SIR
over all links. The resulting behavior of the controller is designed by increasing or
decreasingρ , which is a scalar that assigns more or less weight to the second term
in the cost.

The costH : R(p×N) → R is defined over all vehicle positionsxk
i ∈ R

p for N
vehicles at iterationk as:

H(xk
1, . . . ,x

k
N) =

N

∑
i

N

∑
j 6=i

−SIRi j +
ρ

SIRi j + δ
(1)
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wherei and j is shorthand for vehicles with positionsxi andx j respectively, andδ is
an arbitrarily small positive number to allowSIRi j = 0. The Signal-to-Interference

Ratio (SIR) : Rp→ R is given bySIRi j =
fi j

Ni+∑k∈Ni\ j
fik

and the signal strength be-

tween two communicating agentsi and j is given by fi j : Rp → R. The signal
strength is given byfi j =

P0

dβ
i j

. All vehicles in the neighborhood ofi not including

j is denotedNi\ j , P0 ∈ R is a given maximum signal strength,β is a given dropoff
parameter and oftenβ = 2, anddi j =

∥

∥xi− x j
∥

∥.

2.1 Communication Optimization as a MIQP
We wish to moveN agents along trajectories that descend the costH(xk) from (1),
wherexk ∈ R

pxN is the vector of all vehicle positions at timek, while constraining
this trajectory to remain outside of infeasible regions forall time. For each vehicle
i with positionxk

i ∈ R
p at iterationk, we wish to move an amountsk > 0 along

the direction of steepest descent,−∇H(xk), but we must enforce the constraint to
stay within free space. The value∇iH(xk) ∈ R

p is the gradient of the costH with
respect to the position of vehiclexi at timek and we note that although the cost is
global, the derivative∇iH(xk) depends only onlocal information and is distributed
in this sense. We subsequently drop the subscripti to simplify notation so thatxk is
the position of vehiclei and∇H(xk) refers to the gradient ofH with respect to the
position of agenti.

Gradient projection methods from nonlinear optimization allow us to formulate
descent for our nonconvex cost while maintaining the constraint of staying a convex
set. Because the free space of the environment is almost never convex we must
divide the free space set into the intersection of many convex sets, which is possible
in particular for environments with convex polygonal infeasible regions which is
the case that we consider. We take advantage of the fact that each agent needs to
optimizeH only over its local environment and employ a mixed integer program to
activate a local convex subset of the free space over which wecan perform gradient
projection. The result is a Mixed Integer Quadratic Program(MIQP):

min
x,t

∥

∥

∥
x− (xi

k− sk∇iH(xk))
∥

∥

∥
(2)

s.t. Al x≤ bl + tl M, ∀l ∈ {1, . . . ,L}
El

∑
j=1

tl j ≤ El −1, ∀l ∈ {1, . . . ,L}

tl j ∈ {0,1} ∀ j, l

wheresk is a scalar> 0,L is the number of polygonal infeasible regions in the envi-
ronment,El is the number of edges for infeasible regionl , M is a sufficiently large
scalar, andtl ∈ R

El is a binary column vector returned by the MIQP for each infea-
sible region, andAl ∈ R

(El×p),bl ∈ R
El describe the convex,polygonal, infeasible

regions as defined next. We now provide the mathematical descriptions of infeasi-
ble regions and free space sets returned as solutions from the MIQP:
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Definition 1 Infeasible Regions and Free Space Sets: Infeasible regionsare con-
vex, polygonal sets that are the intersection of El halfspaces

⋂El
i=1 (Aix≥ bi). A ve-

hicle may not move through an infeasible region but we assumecommunication
strength is not affected. The binary column vectors from(2) encode feasible region
constraints and thus a particular solution of binary variables t∗ ∈ R

LEl effectively
“activates” one or more edges of each infeasible region suchthat these selected
edges are the valid constraints enforced in solving the MIQP. The intersection of
the halfspaces corresponding to the activated obstacle edges is always a closed and
convex set denoted

XFt∗ = XF(t
∗) = {x|Al x≤ bl + t∗l M} (3)

where XF(t∗) is the closed, convexfree space subsetcorresponding to the binary
variable solution t∗ of Equation(2).

The intuition for the formulation in Equation (2) is that each vehicle moves as far
along the direction of steepest descent of the costH as possible while staying within
feasible space. The problem with this formulation however,is that if the direction
of steepest descent becomes perpendicular to the edge of an infeasible region then it
is possible to get stuck behind this edge even in the case where the vehicle may be
able to easily go around the obstacle by moving along a descent direction that is not
that of steepest descent, see Figure 2.b. We address this problem in the formulation
of the next section.

2.2 Use of Scaling to Avoid Regions of Infeasibility
The MIQP formulation from the last section can be solved efficiently using off-the-
shelf optimizers, and results in a very simple form of a controller but suffers from
the limitation of always following the steepest descent direction, even in the case
where this direction is obstructed by an infeasible region.Thus, we wish to improve
the range of attainable solutions while conserving the simplicity of the MIQP from
the previous section. To this aim we propose use of thescaledgradient projection
method.

In nonlinear optimization theory the scaled gradient projection method is often
used to improve rate of convergence [7]. Our objective, however, is to influence the
vehicle trajectory towards directions that are not perpendicular to active constraint
edges. In addition, the scaled gradient projection method amounts to the addition of
a term that is quadratic in the optimization variablex and thus is also a quadratic
program as in the previous case and can be easily solved. We define a new problem
whose optimization results in a feasible waypoint ¯xk

S for agenti (wherei subscripts
are dropped):

x̄k
S= argmin

x

∥

∥

∥
x− zk

∥

∥

∥

Sk
(4)

s.t.Al x≤ bl + tl M ∀l
El

∑
j=1

tl j ≤ El −1 ∀l ∈ 1, . . . ,L

tl j ∈ {0,1} ∀ j, l
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where the matrixSk ∈ R
p×p is a positive definite matrix, and we use the notation

‖q‖Sk = q′Skq ∀q ∈ R
p to represent the scaled norm. For this scaled formulation,

the desired waypoint is

zk = xk− sk(Sk)−1∇H(xk) (5)

A more compact definition of (4) can be written using the representation of the
free space set from (3) for each vector of binary variablest∗ that solve (4):

x̄k
S= arg min

x∈XF (t∗)

∥

∥

∥
zk− x

∥

∥

∥

Sk
(6)

The position update rule forxk+1 is given by:

xk+1 = xk+αk(x̄k
S− xk) = xk+αkdk (7)

Where the stepsizesαk andsk satisfy Assumption 1:

Assumption 1 There exist stepsizesαk > 0 and sk > 0 that are sufficiently small
such that given a descent direction dk, a step along this direction will not intersect
an obstacle and will provide sufficient decrease of the cost in the sense of the Armijo,
or limited minimization rule that are standard in NonlinearProgramming [7]. We
assume thatαk and sk satisfy these conditions throughout the paper.

A first order Taylor series expansion of the cost around the current pointxk shows
that descent of the cost is possible for small enough stepsize along a valid descent
directiondk. In the case that the current iterate is at the edge of an obstacle, the step-
size would necessarily be zero to avoid intersecting the obstacle and the method will
stop. The requirement thatSk is positive definite is necessary to maintain descent of
the costH(xk+1)< H(xk). In effect, our next waypointxk+1 will minimize distance
in the sense of the scaled norm to our desired waypointzk [7]. See Figure 2.

We define the descent directiondk = x̄k
S− xk. The advantage is that now we

can steer our trajectory to any heading relative to the direction of steepest descent
−∇H(xk), as long as this direction satisfiesdk = {(x̄k

S−xk)| (x̄k
S−xk)′∇H(xk)< 0}

wherex′y is the dot product of a vectorx and a vectory, and the achieved relative
heading angleθ depicted in Figure 2 is defined as:

θ = arccos

{

(−∇H(xk))′dk

‖∇H(xk)‖‖dk‖

}

(8)

We use this flexibility to assign preference to paths that entirely clear regions of
infeasibility that are in the direction of the negative gradient. In Section 3 we derive
an analytical relationship betweenSk andθ .

3 Analysis
3.1 Analysis of the Unscaled Controller
We show that the sequence of vehicle positions produced by the MIQP, in com-
bination with the update rule from (7) produces strict descent directions such that
H(xk+1) < H(xk) for all k for stepsizes satisfying Assumption 1. Proving descent
of the cost, such thatH(xk+1)−H(xk) < 0, is made challenging by the general
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non-uniqueness of the solution for the binary variablest in Equation (2). This in
turn means that the convex subset over which we perform optimization may not be
unique and may not contain the current iteratexk which makes the classical descent
proof for gradient projection methods not applicable.

From the result asserting that the cost is reduced at each iteration, and the fact
that the local minima ofH are finite as shown in previous work, [5], we expect con-
vergence to a fixed point. This fixed point can either be at the edge of an infeasible
region where the projection ¯xk = xk (stationary) as defined in Lemma 1.4 or can be
a critical point of the costH. In the following section we show how scaling can be
used to decrease the likelihood of getting “stuck” at the side of an infeasible region.

We use the concept of a vectord beinggradient-related.

Definition 2 Gradient Related: A bounded direction sequence{dk}k∈K is gradient-
related to any subsequence{xk}k∈K that converges to a nonstationary point, if:

lim
k→∞

sup
k∈κ

∇H(xk)′d(xk)< 0 ∀k∈K .

We use the following properties of projection from [7]:

Lemma 1 (Properties of the projection onto a convex setX) Let X be nonempty,
closed and convex, and let[z]+ denote the projection of z∈ R

p onto X:

1. The projection of z∈ R
p exists, is unique, and minimizes‖z− x‖ over x∈ X.

2. It must hold that(z− [z]+)′(x− [z]+)≤ 0, ∀x∈ X
3. The projection function is continuous.
4. We havẽx= [x̃− s∇H(x̃)]+ for all s> 0 iff x̃ is stationary.

We now seek to show that thedk produced by the solution to (2) are gradient-
related for allk and thus for stepsizes satisfying Assumption 1 we haveH(xk+1)−
H(xk)< 0.

Theorem 1 For the cost H that is differentiable everywhere, the sequence of di-
rections{dk} produced by solving the MIQP formulation and using the provided
update rule from(7) are directions of descent of the cost such that they satisfy the
gradient related property for points xk that are not stationary points of the cost.

Proof. The proof is identical to that of Theorem 2 with the scaling matrix set to the
identitySk = I . ⊓⊔

3.2 Analysis of the Scaled Gradient Projection Method for
Avoidance of Infeasible Regions

We provide analytical results for three main problems related to the scaled version
of the MIQP (4). First, we relate the scaling matrixSk to the relative heading angleθ
where this direction is relative to the direction of steepest descent. Second, we show
that the use of a scaling matrix generates trajectories for each agent over which the
cost is descended at each iteration. Lastly, we show that there exists a sequence{Sk}
of scaling matrices such that our formulation from (4) generates a trajectory con-
verging to the more desirableunconstrainedlocal minima ofH if such a trajectory
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exists for the environment. Although the problem of deriving such a sequence of
scaling matrices remains open, in the Results section we provide a heuristic method
of generation of scaling matrices that circumvent regions of infeasibility but do not
guarantee convergence to unconstrained local minima ofH.

3.2.1 Controlling the Relative Heading Angle to Avoid Regions of Infeasibility

In this section we gain insight on how to design the scaling matrix to achieve the
desired relative heading angle,θ . From our discussion in 2.2, we require that the
scaling matrixSk must be a positive definite matrix and with an orthonormal choice
of eigenvectorsvi ∈ R

p we can writeSk in a decomposed form,Sk = VΛVT . V =
[v1, . . . ,vp] is a matrix of eigenvectors ofSk andΛ ∈ R

p×p is a diagonal matrix
of eigenvalues{λ1, . . . ,λp} of Sk. Furthermore we know that that allλi > 0 since
Sk is positive definite. Therefore we can write any vector∈ R

p, in particular the
negative gradient vector−∇H(xk), as a linear combination of thevi ’s. In particular,
we can write−∇H(xk) = ∑p

i=1 ζivi whereζi are scalars representing the component
of −∇H(xk) in the direction ofvi , and we consider normalized eigenvectors such
that‖vi‖ = 1. By the Pythagorean theorem, and the fact that thevi are orthogonal,
we have that

∥

∥

∥
∇H(xk)

∥

∥

∥

2
=

p

∑
i=1

(ζivi)
T(ζivi) =

p

∑
i=1

(ζi)
2 (9)

We denote the unprojected heading directiond̃k, and note that this isd̃k =
(zk− xk) for the scaled gradient projection. From (5) we see that thisis simply
sk(Sk)−1∇H(xk). If we again use Pythagorean Theorem to write the expressionfor
∥

∥d̃k
∥

∥, and the dot product∇H(xk)′d̃k we get:

∥

∥

∥
d̃k
∥

∥

∥

2
=

∥

∥

∥

∥

∥

sk
p

∑
i=1

1
λi

ζivi

∥

∥

∥

∥

∥

2

= (sk)
2

p

∑
i=1

(
1
λi
)2ζ 2

i (10)

∇H(xk)′d̃k = sk

p

∑
i=1

(
1
λi
)ζ 2

i (11)

Using the definition of the dot product and the definitions (10), (11), and (9), we
get an expression relating the relative heading angleθ to the scaling matrixSk via
its eigenvectors and eigenvalues:

cos(θ ) =
(−∇H(xk))

′d̃k

‖∇H(xk)‖
∥

∥d̃k
∥

∥

=
∑p

i=1(
1
λi
)ζ 2

i
√

(

∑p
i=1(

1
λi
)2ζ 2

i

)

(

∑p
i=1(ζi)2

)

(12)

This expression shows that the scaling matrix can be designed to achieve a spe-
cific relative heading angle by careful choice of its eigenvectors and eigenvalues. In
particular we notice that ifSk = I whereI is the identity matrix andλi = 1 ∀i, then
cos(θ ) = 1, the heading angle is zero and we move in the direction of steepest de-
scent as expected. Alternatively, putting a larger weight on the eigenvaluesλ j of Sk

such thatλ j >> λi , ∀ j 6= i, will achieve the effect of causing the heading direction
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d̃k to align itself most with the component of−∇H(xk) alongvi . See Figure 2 for a
schematic of a two dimensional case. However, as the ratio ofλi gets larger, rate of
convergence becomes slower so in general the heading angleθ should not be made
larger than necessary.

Contours for Scaled MIQP

movement
k

z

2
as

movementz

o
n

k
z

k ty
R
e
g
i

1
v

as

movement
k

z

e
a
si
b
il
it

2
v

k

1
as

In
fe

Steepest Descentk
x

Steepest Descent

(a) Schematic.

−2 0 2 4 6 8

−2

0

2

4

6  

X(m)

 

Y
(m

)

Infeasible region
Ground sensor

x0 comm veh
Gradient vector field
Trajectory
Final pos comm veh

Scaling direction

θ0=π/4

Possible 
constrained solution

(b) Simulation using scaled MIQP (4).

Fig. 2 Schematic showing the scaled direction and heading angleθ and the change of heading
direction as the eigenvalues ofSk are changed 3(a). Simulation of basic scenario showing the utility
of scaling to avoid getting stuck behind the wall as in 3(b). Here, a constant scaling matrixSk =Sis
used. When the scaled direction reaches a perpendicular angle to the gradient,the trajectory moves
along the steepest descent direction as discussed in 3.2.1.

Lastly, a result of (12) is that the directioñdk can never be perpendicular to the
negative gradient for a positive definite scaling matrixSk. As the eigenvectorvi
approaches the perpendicular direction to−∇H(xk), the component of the negative
gradient vector along this directionζi → 0 and thus, as seen from Equation (10),d̃k

cannot be made to move in a direction that is perpendicular to−∇H(xk).

3.2.2 Analysis for the Scaled Gradient Projection Method
In the last section we showed that the addition of a scaling matrix Sk allows us the
flexibility to design the relative heading angle to avoid regions of infeasibility in the
environment. We now show that the resulting directionsdk = x̄k

S− xk wherex̄k
S is

solved for from Equation (4), are descent directions such that the cost is reduced
over agent trajectories. As in the unscaled case, finding descent directionsdk for
our problem is made challening due to the general non-uniqueness of the binaryt
variables in (4). From the definition of gradient relatedness, the desired property
we wish to show is that∇H(xk)′dk < 0 for all k and all solutionsdk at iterationk.
The intuition for our proof method is to use the solutiondk

1 which is defined for the
convex subset containing the current iterate and which can be shown to always be
gradient related, to bound all other solutionsdk

t that result from different solutions
for the binary variables. From here we can show that∇H(xk)′dk

t < 0 for all dk
t and

k.Using the result ofdk being gradient related for allk, combined with Assumption
1, we get descent of the cost at each iteration such thatH(xk+1)< H(xk).
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To avoid cumbersome notation, we subsequently drop theSsubscript from ¯xk
S and

the reader should assume all projections ¯xk in this section are scaled projections. We
refer to a pointxk as not stationary if it is not equal to its projection such that x̄k 6= xk.

Theorem 2 For the cost H:R(p×N)→R that is differentiable everywhere, denoting
the sequence of vehicle positions{xk} produced by solving the scaled MIQP formu-
lation in (4) and using the provided update rule from(7), we have that all directions
dk are directions of descent of the cost such that they satisfy the gradient related
property for all xk not stationary.

Proof. We denote the set containing the current iteratexk asXF1, and the projection
of zk onto XF1 as x̄k

1 and note that this is a solution of the scaled MIQP (6) over
the setXF1. From Lemma 1.2 generalized to scaled projections, it holdsthat (zk−

x̄k
1)
′Sk(xk− x̄k

1)≤ 0 for xk ∈ XF1 andx̄k
1 ∈ XF1. Expanding out this property and using

the definition ofzk, continuity of the projection, and the fact that we are considering
projection onto a single setXF1 containing the current iteratexk,we have that for all
k (see [7]):

sk∇H(xk)′(x̄k
1− xk)+

∥

∥

∥
xk− x̄k

1

∥

∥

∥

2

Sk
≤ 0, ∀k (13)

The term
∥

∥xk− x̄k
1

∥

∥

2
Sk > 0 for all Sk positive definite andxk nonstationary such

thatxk 6= x̄k
1. Thus from (13), and Lemma 1.4, we have:

∥

∥

∥
xk− x̄k

1

∥

∥

∥

2

Sk
> 0⇒sk∇H(xk)′(x̄k

1− xk)< 0. (14)

So that the directiondk
1 is always gradient related forxk andx̄k

1 in the same convex
subset, wherexk is nonstationary. We will use this inequality again later. We aim to
prove that all directionsdk

t = x̄k
t − xk produced from the solutions of Equation (4)

satisfy:

∇H(xk)′(x̄k
t − xk)< 0 ∀k (15)

Because ¯xk
1 is a valid solution to the projection ofzk ontoXF1, we know that any

solution, ¯xt
k, to the scaled MIQP in (4) must be within the elliptical set defined by

x̄k
1:

E1 = {c|(c−zk)′Sk(c−zk)≤ rS}, rS := (x̄k
1− zk)Sk(x̄k

1− zk) (16)

Now we can write the gradient related condition that we wish to prove as:

− f ∗ =min
x̄t

(−∇H(xk))′(x̄t − xk) (17)

s.t. x̄t ∈ E1

Where our desired condition is that− f ∗ > 0 which ensures that the direction
(x̄t − xk) is gradient related. The minimization problem written above is well-posed
in that f is a continuous function minimized over a compact setE1 and thus there



Decentralized Control for Optimizing Communication with Infeasible Regions 11

exists a minimum. Furthermore, this problem can be solved inclosed form using
Lagrange multipliers to yield the condition:

− f ∗ =−rS+
∥

∥

∥
sk∇H(xk)

∥

∥

∥

2

Sk−1 > 0 (18)

If we take this a step further and substitute in the definitionfor rS from (16), multiply
through by (-1), expand, and simplify we get a new form for theinequality condition
that we wish to prove:

2sk∇H(xk)′(x̄k
1− xk)+ (x̄k

1− xk)′Sk(x̄k
1− xk)< 0 ∀k (19)

We compare to the condition (14). From the reasoning shown in(14), we know
that 2sk∇H(xk)′(x̄k

1−xk)< 0 for x̄k
1 6= xk which is true by the nonstationary assump-

tion. Thus we have that this desired inequality always holdsand all produceddk are
descent directions as desired and this completes the proof.⊓⊔

To gain more intuition notice that the condition in Equation(19) is equivalent to

requiring thatrS = (x̄k
1− zk)Sk(x̄k

1− zk) < rScr =
∥

∥sk∇H(xk)
∥

∥

2
Sk−1. Intuitively what

this means is that ¯xk
1 is a valid projection of the desired waypointzk where the dis-

tance tozk is smaller from ¯xk
1 than fromxk in the scaled norm sense, such that

(x̄k
1− zk)Sk(x̄k

1− zk)< (xk− zk)Sk(xk− zk).
Because we attain descent of the cost at each iteration, and we are optimizing a

continuous function over a compact set so that minima are well defined as shown
in [5],we therefore expect convergence to a fixed point. Thispoint can be at the edge
of an infeasible region or at a critical point of the cost, although the use of scaling
aims to circumvent those infeasible regions which do not contain local minima in
their interiors.

3.3 Existence of Optimal Sequence of Scaling Matrices
Because we optimize a nonconvex cost, we target convergenceto local minima. For
the case where these local minima are reachable in feasible space, we consider a
sequence of scaling matrices{Sk} to be “optimal” if the controller resulting from
using Algorithm 1 generates trajectories for all vehicles that converge to an uncon-
strained local minimum ofH. The existence problem is to assert that if there exists
such a trajectory for the given environment, then there alsoexists a sequence of
scaling matrices such that the trajectory generated by Algorithm 1 is optimal. We
do not find such a sequence, this remains an interesting open question. Instead, we
prove the positive result for the existence problem.

Theorem 3 If ∃{gk}→ x∗unc,where{gk} is avalid sequence of waypoints for each
vehicle that converges to an unconstrained local minimum,x∗

unc, of H givenx0, then
∃{Sk} s.t.{xk} → x∗unc, where{xk} is the trajectory sequence generated by using
Algorithm 1 for each vehicle. A sequence{gk} is valid if H (gk+1)−H(gk) < 0 for
all k, gk ∈ XF , ∀k where XF is the entire feasible region of the environment, and the
stepsize between any consecutive points gk,gk+1 satisfies Assumption 1 and physical
vehicle limits.

Proof. From Proposition 2 we must satisfy−∇H(xk)′dk > 0 for all k. From (11) we
see thatλi > 0 in order to satisfy this condition. We can writegk+1−gk = ∑p

i=1aivi
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for some appropriateai sincegk+1−gk ∈ R
p and the eigenvectors ofSk spanRp.

Since by the descent requirement on{gk} we have−∇H(xk)′(gk+1−gk) > 0, ∀k,
we can choose orthonormal basis vectorsvi of Sk such thatai > 0 andζi > 0 for

all i, whereζi are from (9) and thus the choice ofλi =
sk

ai
ζi satisfiesλi > 0, ∀i and

from the definition ofdk from (10) we see that we can always achievedk = gk+1−
gk, ∀k for this choice ofλ . SinceSk is fully determined through its eigenvectors and
eigenvalues asSk =VΛV ′ and we have shown that there exists a sequence{Sk} for
which {dk} = {gk+1−gk} and thus the resulting sequence of agent positions{xk}
reaches the unconstrained local minimum ofH if {gk} reaches the unconstrained
local minimum from given initial positions.⊓⊔

4 Results
4.1 Algorithm and Simulation Example

In this section we summarize our control method in Algorithm1 and suggest a
heuristic method for choosing an appropriate scaling matrix Sk for each vehicle. We
demonstrate our algorithm and the suggested method for finding Sk via a Matlab
simulation for four communication vehicles and eight ground sensor vehicles in
three-dimensional space (Figure 3).

Algorithm 1 Decentralized Control for Optimized Comms (for agenti)

xk = x0, k= 0.
while k== 0 OR

∣

∣xk+1−xk
∣

∣≥ tol do
k← k+1
{Compute scalingSk using environment topology, see Algorithm 2.}
{Compute gradient using neighbors of agenti:} ∇iH(xk)
{Compute desired waypoint:} zk← xk−sk(Sk)−1∇iH(xk)
{Compute:}x̄k

S←soln to (4)
{Compute feasible stepsizeαk satisfying Assumption 1.}
{Compute new pointxk+1 for agenti using stepsizeαk:} xk+1 = xk−αk(x̄k

S−xk).
end while

4.1.1 Heuristic Selection of Scaling MatrixSk

We suggest one possible method for choosing a scaling matrixSk for each vehicle
that is easily implemented and relies solely on map topologythat is local to each
agent. We show via simulation, the performance of the resulting optimization and
its adaptive capabilities in the case of agent failures. Foreach agent, we draw a line
along the direction of steepest descent which is plotted as ablue line in Figure 3(a),
call this linegL. Let O be the first infeasible region intersected bygL. We wish
to computeSk such that we move aroundO, so we compute the projection of the
intersection point onto each of theL edges ofO and choose the point such that the
chord from the current positionxk to the edge pointe∗ has the largest dot product
−∇H(xk)′(e∗− xk). This represents a direction that is as close to the direction of
steepest descent as possible but that circumvents the infeasible region obstructing
this direction. This chord is plotted in red for each agent whose steepest descent
direction intersects an infeasible region in Figure 3(a). We use this chord to compute
the first eigenvector ofSk so thatv1 = (e∗− xk)/

∥

∥(e∗− xk)
∥

∥, thenv2 andv3 are
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Fig. 3 (a) Scenario showing infeasible regions and 4 communication vehicles and 8 ground sen-
sors. (b-d) Adaptive behavior when one communication vehicle fails (red quadrotor): remaining
vehicles change trajectories to compensate. (b) Cost is always decreased along agent trajectories.

simply any other unit vectors that are othornormal to each other and tov1. Finally,
we can set the eigenvaluesλ2,λ3 >> λ1 to attain a directiondk closest to thev1
direction, see discussion in Section 3.2.1 and Figure 3(a).We warn however that
choosing the eigenvalue ratios too large will inversely effect convergence rate and
thus this should not, in practice, be made larger than necessary. The matrixSk is
then computed via its eigenvectors and eigenvalues asSk = VΛV ′ whereV andΛ
are defined in Section 3.2.1. If there is no infeasible regionobstructing the direction
gL for that vehicle, or there exists no such edge pointe∗ so that the dot product
−∇H(xk)′(e∗−xk)> 0 (this is the case where no circumventing direction produces
descent in the costH), we simply setSk = I , whereI is the identity matrix. This
algorithm is summarized in 2. For the simulation in Figure 3 we setλ1 = 1,λ2 =
50,λ3 = 50 and achieved satisfactory convergence in an average of 150 iterations
where each iteration took on the order of 0.7 seconds using the CPLEX for Matlab
toolbox on a 2.4GHz CPU laptop.
4.1.2 Discussion on When to Use Scaling

The use of scaling is most effective when applied at sufficient distance from path
obstructing infeasible regions. Since any descent directiondk must be less than per-
pendicular to the negative gradient direction, as a vehiclegets closer to the edge of
an obstructing infeasible region, the range of descent directions that can clear the
obstructing region becomes smaller. Therefore we expect scaling to perform bet-
ter in environments where there are larger distances between obstacles, and where
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Algorithm 2 Heuristic Selection of Scaling MatrixSk in 3D Using Local Informa-
tion (for agenti)

{DefineD: Sensing radius within which infeas. regions can be detected for vehiclei.}
{DefineO : closest infeas. region in steepest descent direction.}
{Definerot(π/2): Rotation matrix byπ/2.}
{Compute a line in direction of negative grad:}gL= xk−D∇H(xk).
{ ip← intersection point of gL with closest face of infeasible region (O)}
if ip 6= {0} then

{EP← all points on edges ofO with smallest distance fromip}
e∗ = maxe∈EP(e−xk)′gL
{Compute first orthonormal eigvec ofSk:} v1← (e∗−xk)/(

∥

∥e∗−xk
∥

∥)
v2← rot(π/2)∗v1
v3← (v1×v2)/(‖v1×v2‖)
V← [v1 v2 v3]
{Setλ1 << λ2,λ3 as discussed in Section 3.2.1}
Λ ← diag(λ1,λ2,λ3)
Sk←VΛVT

else
{No obstacles in steepest descent direction, set scaling to identity:Sk← I}

end if

scaling is applied at the time that an obstructing obstacle is detected as outlined
in Algorithm 2. Theorem 2 shows that as long as the scaling matrix Sk is strictly
positive definite, ¯xk 6= xk, andxk is not a critical point such that∇H(xk) 6= 0, then
the resulting directiondk can never be perpendicular to the negative gradient direc-
tion. For an intuitive explanation, consider the two dimensional case and the un-
projected directiond̃k from (10). As one of the eigenvectors ofSk, sayv1, becomes
perpendicular to−∇H(xk), the component of the negative gradient in the direc-
tion of v1 approaches zero,ζ1→ 0 and−∇H(xk)→ ζ2v2. Therefore the direction
d̃k = sk( 1

λ1
ζ1v1+

1
λ2

ζ2v2)→ sk 1
λ2

ζ2v2 which is exactly the negative gradient direc-

tion scaled bysk 1
λ2

. This means that even if scaling is applied incorrectly (almost
perpendicular to the negative gradient), the resulting direction can never be perpen-
dicular and in fact will align with the negative gradient direction, although, ifλ2 is
a very large number it is seen that progress along this direction becomes very slow
and convergence rate suffers as discussed in Section 3.2.1.Also if the current posi-
tion is at a stationary point where the projection ¯xk is equal toxk which may occur
at the side of an obstacle, or at a critical point of the cost where−∇H(xk) = 0, the
resulting direction is zero even if nonzero scaling is applied. This can be seen easily
from the update equationxk+1 = xk+αkdk wheredk = (x̄k−xk) which is zero ifxk

is stationary, or in free spacedk = −sk(Sk)−1∇H(xk) = 0 at a critical point where
∇H(xk) = 0. Therefore the observations that 1)dk can never be perpendicular to the
direction of steepest descent (and actually approaches thesteepest descent direction
if scaling is applied perpendicular to the negative gradient), and 2) that the direction
dk is zero such that the method stops at stationary points or critical points even for
positive scalingSk 6= I , and finally that 3) scaling is more effective when applied at
larger distances from path obstructing infeasible regions, motivate our recommenda-
tion of applying scaling for any path obstructing infeasible region within the vehicle
sensing radius.
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Fig. 4 (a) Overhead view of field test scenario (∼ 11m× 7.5m). Obstacles (pink) and configu-
ration space boundaries (solid lines) overlay a gridmap of the environment. Stationary ground
sensors (xS1,xS2,xS3) are shown as red squares. The 2 quadrotor trajectories are shown in teal and
yellow, with initial positions (x0

V1,x
0
V2) and final positions(xf

V1,x
f
V2) highlighted by blue squares.

(b) Average trial cost and standard deviation averaged over10 trials.

4.2 Hardware Experiments

The algorithm was validated in a decentralized hardware experiment with two mo-
bile quadrotor helicopters and three stationary ground sensors. This evaluation was
performed in a known GPS-denied indoor environment with obstacles (the second
floor atrium in the Stata Center at MIT). The hardware platform consisted of As-
cending Technologies Pelican quadrotors1, each outfitted with a Hokuyo2 UTM-
30LX laser range-finder and 1.6Ghz Intel Atom processor (for details see [17]).
Each vehicle performs onboard state estimation and controlenabling completely
autonomous flight. For practical purposes, each quadrotor communicates via WiFi
with a corresponding ground station laptop, where human input and planning pro-
cesses are run. The communication channel between the mobile and ground sensors
is simulated. The environment and vehicles are shown in Figure 1.

Ten trials were run, each starting at the initial configuration shown in Figure 4
(labeledx0

V1,x
0
V2 for vehicles 1 and 2, respectively). The obstacle positionsare over-

layed on the gridmap in pink, and a solid outline denotes the configuration space
boundaries, orinfeasibleregions. These regions do not impede communication;
rather, they represent unsafe or untraversable regions. Inthis environment these
obstacles were an open staircase, a thin wall, and a table. The quadrotors share
real-time pose information and at each control iteration 10Hz compute their next
waypoint according to Algorithm 1. The control commands were artificially throt-
tled at 1Hzby the waypoint executor. Figure 4 shows the trajectory of each vehicle
during one trial, and the resulting local minima configuration to which they con-
verge. Note that vehicle 1 moved around the wall. Vehicle 2 initially moved towards
the wall, then converged to a point along the obstacle boundary distributed between
sensors 1 and 3 and vehicle 1. The average duration over all trials was 65s until
convergence.

Video footage:http://people.csail.mit.edu/prentice/isrr2011/

1 Ascending Technologies GmbH.http://www.asctec.de
2 Hokuyo UTM-30LX Laser.http://www.hokuyo-aut.jp
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5 Discussion

We have presented a method for communication optimization in a heterogeneous
network of aerial and ground vehicles in an environment withinfeasible regions us-
ing the communication cost function from previous work [5].We pursue extension
to the general nonsmooth case, and study of the effect of obstacles on communica-
tion strength in future work. We have demonstrated both analytically and through
simulation and hardware experiments, the utility of using asequence of scaling ma-
trices to improve the range of converged solutions by movingalong trajectories that
avoid infeasible regions.
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