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Abstract— This paper presents the WiFi-Sensor-for-Robotics
(WSR) open-source toolbox1. It enables robots in a team to
obtain relative bearing to each other, even in non-line-of-sight
(NLOS) settings which is a very challenging problem in robotics.
It does so by analyzing the phase of their communicated
WiFi signals as the robots traverse the environment. This
capability, based on the theory developed in our prior works,
is made available for the first time as an open-source toolbox.
It is motivated by the lack of easily deployable solutions
that use robots’ local resources (e.g WiFi) for sensing in
NLOS. This has implications for multi-robot mapping and
rendezvous, ad-hoc robot networks, and security in multi-robot
teams, amongst other applications. The toolbox is designed for
distributed and online deployment on robot platforms using
commodity hardware and on-board sensors. We also release
datasets demonstrating its performance in NLOS and line-
of-sight (LOS) settings and for a multi-robot localization use
case. Empirical results for hardware experiments show that the
bearing estimation from our toolbox achieves accuracy with
mean and standard deviation of 1.13 degrees, 11.07 degrees in
LOS and 6.04 degrees, 26.4 degrees for NLOS, respectively, in
an indoor office environment.

I. INTRODUCTION

Estimating and/or sensing relative bearing between robots
is important for many multi-robot tasks such as coverage,
rendezvous, and distributed mapping amongst others [1], [2].
This typically requires using external infrastructures such
as GPS, pre-deployed wireless tags or beacons [3], and/or
exchanging shared maps [4] and landmarks as with Simul-
taneous Localization and Mapping [5]. Reliance on shared
maps or features for estimating relative bearing is particularly
difficult when robots are operating in remote areas from one
another, or in environments with non-line-of-sight (NLOS) to
each other. Thus, when operating in unknown or GPS-denied
environments with walls and other occlusions, obtaining
relative bearing using traditional sensing modalities like
camera or LiDAR is very challenging. The use of wireless
signals has been studied as a novel sensing mechanism
where their ability to traverse walls and occlusions has
been exploited specifically for NLOS situations [6], [7], [8].
Based on this understanding of wireless signals, we intend
to address the limitation of relative bearing sensing in NLOS
for general and unknown environments using robots’ local
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Fig. 1. Schematic that shows the multiple paths traversed by WiFi signals
that are transmitted between robots. Green, red, and orange lines represent
the line-of-sight, direct and reflected signal paths respectively. The relative
amplitudes of these multipaths from different directions are captured in the
Angle-Of-Arrival profiles as distinct peaks (highlighted circles). Our toolbox
enables the computation of this profile and the estimation of the relative
bearing from it, using a robot’s on-board resources that are available as
an open-source toolbox for the first time.

Fig. 2. AOA profile obtained as output of the toolbox during hardware
experiments. AOAmax is the estimated relative bearing, between robots, in
azimuth (x-y plane) and elevation (x-z plane). The toolbox also returns the
prominent signal multipaths captured in the profile. Angles are in degrees.

onboard resources. Hence, we develop and release the WiFi-
Sensor-for-Robotics (WSR) toolbox.

Our toolbox builds upon a key intuition that as wireless
signals are transmitted between robots and traverse the
environment, they are attenuated, scattered, and reflected
over several spatially diverse paths in a phenomenon called
multipath (Fig. 1). These multipaths divulge critical infor-
mation such as the relative bearing of two communicating
robots, the direction of improved signal strength, and the
environment [9]. Measuring all such multipaths provides a
full “Angle-of-Arrival (AOA) profile,” which captures the
relative impinging angle and magnitude of these paths to
each other (Fig 2). Having access to this full profile is
usually more informative for many robot applications as
opposed to a single measure, such as range (distance) from
an ultra-wideband (UWB) tag, or signal strength from a
bluetooth beacon. This is because analyzing all signal paths
can provide i) multiple routes for optimizing communication
between robots, ii) multiple rays for finding accurate bearing
even in highly cluttered NLOS scenarios, and iii) features for
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security applications where the profile acts as a unique sig-
nature of the sender. As such, this information has been used
in many applications including localization [10], maintaining
adaptive communication networks in multi-robot teams [11],
enabling rendezvous for distributed mapping [12], and mea-
suring the uniqueness of a transmitting robot for security
purposes [13], [14].

An enabling principle that allows robots to measure a full
AOA profile is Synthetic Aperture Radar (SAR) [15]. By
processing small changes in the phase of the received signal
along with the knowledge of the its local displacement, a
robot can effectively emulate the direction-finding capabili-
ties of an antenna array along its path (Fig 3). Importantly,
this capability is possible using local on-board information
available to robots; i.e. their received WiFi packets combined
with inertial estimation of their local displacement.

Our recent work develops a theoretical framework that
enables a SAR-like approach for robots moving arbitrarily
in R3 [16]. The framework uses noisy onboard sensors for
displacement estimation, and allows for the motion of both
the transmitting and receiving robots. That work essentially
brings the capability of SAR-based methods closest to be-
ing applicable for use with general multi-robot systems.
However, until now, this capability has been unavailable for
general accessibility of the robotics community. This is due
to a lack of an open-source toolbox that lowers the barrier
to deployment for this new functionality. The above reason
as well as the growing interest in using wireless signals for
sensing in robotics, were the key motivating factors behind
the creation of the WSR Toolbox that we introduce here.

The WSR toolbox makes the measurement of AOA pro-
files accessible to the wider robotics community for the
first time. The toolbox can be deployed on robot plat-
forms using on-board computation, noisy local displacement
measurements in R3, and minimal communication (≈ 5
kB/sec, similar to lightweight ping packets). By releasing
this toolbox, we hope to enable the community to adopt and
build upon this new suite of perception capabilities for robots
with minimal deployment overhead.
Contributions. We present a systems paper with the main
contribution being the opensource toolbox itself. The com-
ponents of the toolbox and its features are described below.

1) The WSR Toolbox: The toolbox comprises of:
• A standalone WiFi driver that allows simultaneous

and automatic packet broadcasting. Thus, any signal re-
ceiving robot can get packets from multiple transmitting
robots simultaneously.

• A C++ library that takes as input a robots’ local
displacement (on the order of 1m measured from an on-
board inertial sensor) along with collected WiFi signal
packets. These are processed together to output the AOA
profile, relative bearing and a reliability metric, based
on the multipath signature, that can be used to reject
outlying measurements.

• A ROS package for easy integration with robot plat-
forms and applications, as well as a python based
visualization capability.

Fig. 3. Robot i collects M WiFi packets along its path in R3 from time
tk to tl. Robot i emulates a virtual antenna array using its motion and
measures relative bearing in azimuth (ϕ) and elevation (θ) to robot j. For
our experiments we produce a full AOA profile using robot displacements
on the order of 1 meter.

2) Experimental evaluation:
• We conduct an empirical evaluation of AOA accuracy

and performance tradeoffs for online computation using
an on-board UP squared board for processing.

• We demonstrate the applicability of the WSR toolbox
for relative localization in multi-robot systems, where a
localizing ground robot measures its relative location to
several transmitting robots that are in NLOS, without
assuming a shared map or known visual landmarks.

• We provide a dataset of our experiments conducted in an
indoor office building environment in LOS and NLOS.
This dataset includes all inputs, i.e. local displacement
and WiFi data collected for a team of 4 robots across
multiple locations.

II. RELATED WORK.
To the best of our knowledge, there is no open-source

toolbox or library that uses directional information from
wireless signals for applications like localization, rendezvous
for distributed mapping, adhoc robot network systems, and
spoof-resilience [11], [12], [13], [17]. Hence, in this section
we primarily focus on comparison to wireless signals-based
methods and sensors that enable at least one of these appli-
cations. Solutions based on visual sensing modalities are not
included, specifically due to their limitations in NLOS, as
highlighted earlier.

Extensive work has been done in the wireless commu-
nity for localizing communicating devices [14], [18], [19].
However deploying these approaches on mobile robot plat-
forms is challenging due to constraints on size, weight, and
power (SWaP). Methods utilizing wireless signal strength
are more commonly used in robotics, predominantly for
localization [20], [21], [22]. However, this requires sampling
along multiple directions with substantial robot displacement
to capture change and are coarse due to the impact of
noise or deep fades [23]. In contrast, our system requires
minimal robot displacement, on the order of one meter. By
using the signal’s phase which is more sensitive to local
displacement [24] our toolbox provides higher accuracy in
estimation of spatial information.

Recent works are exploring ways to utilize wireless signal
information more efficiently in robotics using various wire-
less signal sensors. A Radio-Frequency Identification (RFID)



Fig. 4. System architecture of the WSR toolbox.

based system for multi-robot scenarios is introduced in [25],
but requires predeployed infrastructure (RFID nodes). UWB
has been used for localization and mapping either by using
custom radio modules as anchors or by fusing with RGBD
camera data [26], [27]. Commercial bluetooth sensors also
use the signal’s phase to provide bearing information. How-
ever, since the information obtained from these sensors is a
single scalar value, it limits the scope of their usage for multi-
robot coordination problems. Additionally, the information is
often limited to 2D space, unless custom-built sensors are
used [28]. In contrast, by using off-the-shelf components
to obtain the AOA profile, our toolbox enables obtaining
relative bearing in 3D space as well as diverse applications
like localization and security in robot teams.

III. SYSTEM ARCHITECTURE
The WSR toolbox is a software implementation of our

theoretical framework introduced in [16]. This framework
solves key algorithmic challenges for making the SAR-like
approach compatible with general robot platforms and local
on-board sensors. The toolbox architecture comprises of the
following four major components (Fig. 4):

• WiFi Driver Module: A standalone WiFi driver that is
deployed on all robots to collect WiFi phase data.

• Data Extractor Module: Allows for processing the robot
displacement data and WiFi phase data - the key inputs
required by the toolbox.

• AOA Profile Generator: Fuses the processed input data
streams to generate the complete AOA profile.

• Relative Bearing Estimator: Estimates the relative bear-
ing from the calculated AOA profile as well as identifies
potential outliers using a profile reliability metric.

In the following sections, we discuss the design details of
each of these components. For the rest of the paper, we
denote any robot that is computing AOA using the received
WiFi signal as the robot i. Ni is the neighborhood of robot
i. For any transmitting robot j ∈ Ni we assume that robots i
and j can communicate by broadcasting lightweight packets
(∼50 bytes/packet).

A. WiFi Driver Module
The toolbox takes the signal’s Channel State Information

(CSI) [24] as input and extracts signal phase from it. The
WiFi driver is a standalone module that incorporates the
Linux 802.11 CSI Toolbox [29] and is deployed on robots
i, j for collecting CSI data. Additionally, we embed the

necessary information in packets to facilitate noise removal
from collected data, uniquely identify any robot j, and en-
ables simultaneous broadcast of WiFi packets from multiple
robots.
Enabling CSI noise correction: The CSI data for commercial
WiFi cards is typically impacted by noise i.e Carrier Fre-
quency Offset (CFO). One method to address this is to pair
CSI data of WiFi packets exchanged almost simultaneously
between robot i and a robot j ∈ Ni. Previous work requires
packets to be paired using timestamps (requiring micro-
second level synchronization) [11]. Instead, this module
embeds a frame number for each broadcasted packet, which
is then used for pairing. We thus relax the requirement of
time synchronization which is challenging to maintain for
distributed robot teams. We note that all robots in the team
need to install the WiFi driver on their onboard computers
to collect CSI data.
Packet broadcast protocol: Robots in a team need to simul-
taneously broadcast WiFi packets when using our toolbox.
However, it also results in non-deterministic packet delays
due to packet contention on the signal receiving robot and
thus failure to correct CFO. Therefore, we implement a
simple round-robin protocol similar to the time-division
multiple access (TDMA) algorithm by modifying part of the
Linux 802.11n CSI Tool. Thus, a robot j ∈ Ni transmits
packets only when it detects a packet intended for itself
that is broadcasted from robot i. This protocol thus enables
scaling up the deployment to multiple robots.

B. Data Extractor Module
This module is part of the core WSR C++ library and

performs two tasks - i) extracting signal phase from CSI
data and ii) parsing robot displacement data collected from
on-board sensor.
Extracting signal phase: This module incorporates the basic
CSI data parser developed in [29] for extracting signal’s
phase. It uses the information we embed in the WiFi packets
to first cancel CFO. However, the CSI data is comprised of
multiple subcarriers, each varying slightly in phase from the
other [30]. Hence, this module interpolates the phase across
these subcarriers to calculate the phase corresponding to the
true center frequency of the WiFi channel. This also increases
phase accuracy by averaging out any errors in individual
subcarrier phase measurements i.e., correction of sampling
time offset.



Displacement parser: This module parses the input displace-
ment, in Euclidean coordinates, obtained from the robot’s
on-board inertial sensors. Such inertial sensors are often
impacted by noise and accumulating drift. However, the robot
displacements in R3 used by the toolbox are of the order of
1m with the minimum being two times the signal wavelength
(≈ 12 cm for 5Ghz WiFi) [31]. In [16] we show that a)
only the estimation error in displacement between time tk
to tl (See Fig. 3) impacts AOA and, b) accurate AOA is
best achieved with robot motion along a curved path in
R3, since such paths are more informative than straight-line
paths. Since displacement is recalculated with respect to the
robot position at time tk, the relative bearing estimation is
with respect to the robot’s heading at tk. We note that the
duration between tk to tl is small i.e., a few seconds.

C. AOA Profile Generator Module
This module is part of the C++ library. , we give a

brief overview of the underlying algorithmic framework
and direct the reader to refer our previous work [16] for
additional details. This module essentially fuses the robot’s
displacement in R3 and WiFi phase data to generate the AOA
profile. It comprises of the following components.
Steering Vector: Robot i processes M WiFi packets received
from robot j as it moves from time tk to tl (Fig. 3). This
is akin to simultaneously capturing these packets by a M -
element virtual antenna array. The steering vector a(θ, ϕ)(t)
characterizes the array geometry and is given as

a(θ, ϕ)(t) =
[
e(

2πρ(t)
√

−1
λ sin θ sin ξ(t)cos(ϕ−φ(t))+cos ξ(t) cos θ)

]
for a candidate direction of a robot j, denoted by ϕ (azimuth),
θ (elevation). pi(t) is the robot i’s displacement in R3 from
time tk to any time t ∈ [tk, tl] and is represented in Spherical
coordinates as (ρi(t),φi(t),ξi(t)).
Bartlett Estimator: The phase difference of the signal hij(t)
received at the virtual antenna array is calculated using
a(θ, ϕ)(t). This is done using the direction of arrival algo-
rithm, Bartlett estimator [32] to ultimately obtain the AOA
profile Fij(ϕ, θ) (Fig. 2)

Fij(ϕ, θ) =

∣∣∣∣∣∣
tl∑

t=tk

hij(t) a(θ, ϕ)(t)

∣∣∣∣∣∣
2

∀ pairs of(ϕ, θ). (1)

The profile captures the received signal multipaths at robot i
from robot j along all pairs of candidate directions (ϕ,θ) of a
robot j. In addition to this, the computation can be selected
to be parallelized within this module for faster processing.
The overall parallelization leads to a 40% improvement in
runtime as compared to a single-threaded implementation.

D. Relative Bearing Estimator Module
This module is part of the C++ library. It uses the AOA
profile to i) estimate the relative bearing between robots
and ii) calculate a reliability metric which helps in rejecting
potential outlying AOA measurements.
Estimating relative bearing: AOAmax corresponds to the
dominant signal direction in the profile Fij(ϕ, θ) and can be
used as relative bearing between robots. To enable additional

Fig. 5. Profile variance σij (Eq. 2) and corresponding AOA error for
LOS and NLOS. High AOA error is observed specifically for NLOS samples
beyond a threshold of σij >0.9 which indicates a noisy AOA profile. Two
sample profiles from hardware experiments, one with low variance and the
other with high variance are shown on the right.

applications, the toolbox also returns other prominent signal
multipaths. In practice, true multipath peaks in Fij(ϕ, θ)
are closer in magnitude compared to peaks due to noise
(Fig. 2) [33], [34]. Thus, the Top N peaks in Fij(ϕ, θ) are
selected such that they are at least K% of the AOAmax’s
magnitude. Each of the Top N peaks is also required to be
distinct multipath and not local maxima around an existing
peak (e.g., AOAmax). This is achieved by ensuring that no
two peaks in Top N are within α degrees of each other. We
note that N , K, and α are chosen empirically depending on
the extent of the multipath richness of a given environment
(i.e. how cluttered it is). In our experiments we use N=3,
K=75 and α=4. Potential uses of the Top N peaks for
different multi-robot applications are discussed in Sec. VII.
Reliability metric: The AOA profile can experience multiple
peaks due to noisy inputs or signal multipath. Thus, it is
important to understand which AOA estimates are outliers
and subject to rejection. In order to determine the reliability
of estimated AOA, this module returns the variance σij of
the AOA profile Fij(ϕ, θ) around AOAmax. In Sec. V we
show how σij is used for outlier rejection in a localization
task. Extending the metric from [11] to the general 3D case,
it is given as:

σij =
σFij

σNij

, (2)

where σFij
=

∑
ϕ∈[−π,π]

∑
θ∈[0,π]

Ψfij(ϕ,θ)
F denotes the sum

of how far each peak in Fij(ϕ, θ) is away from AOAmax,
σNij =

∑
ϕ∈[−π,π]

∑
θ∈[0,π]

ΨF
A is the normalization factor

with A being the number of all possible combinations of
(ϕ, θ). F =

∑
ϕ∈[−π,π]

∑
θ∈[0,π] fij(ϕ, θ), where fij(ϕ, θ)

is the magnitude of a peak along a specific direction (ϕ, θ).
Ψ = (ϕ − ϕmax)

2 + (θ − θmax)
2, ϕmax and θmax being

the azimuth and elevation angles of AOAmax. σij < 1
corresponds to Fij(ϕ, θ) that has very few or no multipath,
σij ≈ 1 corresponds to a noisy Fij(ϕ, θ) and σij > 1 implies
the presence of strong multipath. This allows us to reject
estimates of AOAmax that are more likely to be erroneous
e.g when σij ≈ 1. The toolbox allows setting a user-defined
variance threshold value τ to reject bearing estimates for
σij > τ . An example of this is shown in Fig. 5 for data



Fig. 6. Left(a): Test area used for experiments. Right(b): Kernel density estimate(KDE) plot for AOA error in LOS and NLOS scenarios, applying
outlier rejection based on the reliability metric (Eqn. 2). The steering vector is generated using estimated displacement from the T265 camera. From these
empirical results, we can approximate the AOA error of our system as a Gaussian distribution. Distance of the signal receiving robot is at most 8.0 meters
from any transmitting robot in NLOS.

Fig. 7. Robot platform and sensors used for hardware experiments

collected from our hardware experiments which uses τ=0.9.
A profile with lower variance is less noisy as compared to
the one with high variance and hence is more reliable for
AOA estimation.

IV. EXPERIMENTAL EVALUATION

This section gives details of the robot platforms and
sensors used for the hardware experiments and results of
AOA accuracy. We place the robots in LOS and NLOS of
each other in different rooms of an indoor office building. We
also provide performance results for onboard computation on
the Up-Squared board 2. To showcase the toolbox utility we
conduct a multi-robot localization experiment and evaluate
the localization error resulting from estimated AOA. We also
release the dataset of these experiments to motivate further
research within the community.

A. Testbed Setup Hardware
The testbed setup is shown in Fig. 6 (a). The total test

area is approx. 155 sq. meters and spans 7 locations in the
office area. These include the main testbed with a motion
capture system and 6 locations that are in NLOS. The
locations include chairs, tables, glass doors, electronics, and
metal shelves among others. We collect data samples for
ten positions of the localizing robot i arranged in a grid.
These positions are at a minimum distance of 2.5m from
LOS robots in Ni. For NLOS, robots in Ni are placed in

2Evaluation for Intel NUC is available at https://github.com/Harvard-
REACT/WSR-Toolbox/wiki/Performance-Tradeoffs

adjacent office spaces at a maximum distance of ≈ 8 m. The
true positions of robots in Ni are known and are calculated
using the motion capture system, measuring tape, laser range
pointer, and 3D RGBD map generated using an iPhone.

We use Turtlebot3 ground robots equipped with UP-
Squared boards (8GB RAM), Intel 5300 WiFi card and 2 dBi
WiFi antenna as shown Fig. 7. The signal phase is obtained
from CSI data collected using WiFi card. The localizing
robot’s displacements are captured using motion capture sys-
tem (baseline), on-board odometer and Intel T265 tracking
camera (estimated displacement3). During the experiments,
data is collected as follows:

• Packet transmission rate of robots j ∈ Ni: 200 pack-
ets/sec (4 sec)

• 2D localizing robot displacement: linear velocity = 0.2
m/sec, angular velocity = 0.4 m/sec

B. Performance evaluation of relative bearing estimation
Accuracy evaluation: We evaluate the toolbox’s performance
using a ground robot and azimuth AOA. When an AOA
measurement is required, the robot i broadcasts packets
that simultaneously activate the auto packet transmission of
robots in Ni. The displacement of robot i and CSI data for
robots i and j ∈ Ni are collected on-board in realtime. AOA
accuracy is measured by the difference between AOAmax

and groundtruth AOA in the x-y plane between a pair of
robots i and j. A total of 637 samples are collected at
different setup locations (Sec. IV-A). We do not reject any
samples during data collection and only remove outliers
after computing the AOA profile using the reliability metric.
σij is determined empirically and applied uniformly to all
collected data samples before computing aggregate AOA
results. For 294 LOS and 343 NLOS samples, any sample
with σij > 0.9 is identified as an outlier. Thus, 0.34% of
LOS samples and 11.37% of NLOS samples are rejected.
The mean error of these rejected samples is 51.82 degrees,
indicating a good correlation between AOA accuracy and σij

(Fig. 5). Fig 6 (b) shows the kernel density estimate (KDE)

3 We note that the camera is only used to obtain local displacement
estimates of the ground robot and not for localization with respect to the
transmitting robots.
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Fig. 8. AOA accuracy in NLOS for different computation configurations
(Table I). The steering vector is computed using the displacement estimate
from T265 camera. Although there is significant difference in runtime, their
AOA estimation errors are comparable.

TABLE I
RUNTIME COMPARISON USING MULTI-THREADED IMPLEMENTATION.

Configuration Parameters Runtime time (sec)
Avg Pkt Res Laptop UP board

Default 880 360x180 0.94 6.57
Low-Res 880 180x90 0.23 1.65

Sub-sample 440 360x180 0.47 3.20
Low-and-Sub 440 180x90 0.12 0.85

plot of AOA accuracy; the steering vector is generated using
estimated robot displacement from the T265 camera. As
indicated from these results, the error in LOS and NLOS can
be approximated by a Gaussian distribution. Additionally,
hardware experiments in our previous work [16] indicate an
error of 0.2m for 2.8 m long robot displacements on average
i.e., 7% estimation error for the T265 camera. This results in
a median estimation accuracy of 7.58 degrees in azimuth; for
robot displacement without any errors, the median azimuth
error is 1.23 degrees. 4

Performance tradeoff: The output AOA profile Fij(ϕ, θ) has
a default resolution of 360x180 with a granularity of 1 degree
i.e 360 degrees in azimuth and 180 degrees in elevation.
However, this can be modified to improve runtime and
memory usage. For example, reducing the resolution of
Fij(ϕ, θ) can improve processing time by up to 75% (Table
I) with a modest increase in AOA error (Fig. 8). We also
compare the runtime performance of the toolbox on the UP-
Squared board to that of a laptop (with 8 cores and 64
GB RAM) for different computation configurations (Table
I). These include:

• Default: AOA profile resolution 360x180, uses all col-
lected packets.

• Low Res: resolution 180x90, uses all packets.
• Sub-sample: resolution 360x180, sub-sample packets

(i.e. using every alternate packet).
• Low-and-Sub: resolution 180x90, sub-sample packets.

We note that using configurations other than the default
may lead to increased profile variance due to computation
approximations, resulting in higher sample rejection.

4 For results pertaining to bearing estimates in full 3D space using an
aerial robot, please refer [16].

Fig. 9. This figure shows an example using the top N peaks extracted from
profile to localize a receiving robot i using estimated AOA to transmitting
robots j ∈ Ni. The solid rays represent the dominant signal direction, while
the dashed rays represent other multipath peaks in Top N in the AOA profile.
Eqn. 3 uses all Top N peaks for finding the best intersection. We set N=3
for our experiments. The blueprint on the right shows the corresponding
locations of the robots that are in different rooms and all in NLOS to one
another.

Fig. 10. Cumulative distribution function (CDF) plot that shows the
localization accuracy of the receiving robot for transmitting robots in
NLOS (convex-hull setup), using Top 3 peaks in the AOA profile. The robot
displacements to calculate the steering vector are generated using baseline
(motion capture), T265 camera, and robot’s on board odometer. We reject
samples using the profile variance σij = 0.9 (Eqn. 2).

V. APPLICATION STUDY

We showcase the utility of our system for a multi-robot
localization application and an active rendezvous application
between an aerial robot and a ground robot.

A. Multi-robot localization
In the multi-robot localization application, a ground robot

is localized taking the AOA measurements of neighboring
robots in both LOS and NLOS as per the setup in Fig. 6.
Localization Algorithm: The localization algorithm uses the
AOA profile to estimate the position of a robot i rather than
just single bearing value. It’s formulated as an optimization
problem which takes as input the position of robots in Ni and
their top N AOA set Xi,j estimated by the robot i for each
j in Ni. The size of the AOA set |Xi,j | is N, and ki,j is the
index of kth largest peaks. This allows for generating a ray
that originates from robot j ∈ Ni to robot i. Specifically,
a line across the position aj for j ∈ Ni and along a unit
vector nj formed by each kth largest peak (ϕk

i,j , θ
k
i,j) in Xi,j

can be represented as aj + λnj . Then we can write nj as:



Fig. 11. (Top) Aggregate data of signal strength of the transmitting
robots measured by the localizing robot (L1, Fig. 6) for around 1 meter
displacement used in our experiments. The variation in signal strength does
not show a significant trend that can enable estimation of signal direction.
(Bottom), Using signal phase which has clear variation trend for the same
robot displacement, our toolbox obtains a more accurate relative bearing
measurement.

nj = [sin(ϕk
i,j) cos(θ

k
i,j), cos(ϕ

k
i,j) cos(θ

k
i,j), sin(θ

k
i,j)]

T . The
distance from the localizing robot i’s position pi to the line
can be written as vector form: Dk

ij(pi) = ||(pi−aj)−((pi−
aj) · nj)nj ||. The position of localizing robot can thus be
computed as the solution of following optimization problem:

min
pi, ki,j ∀j∈Ni

∑
j∈Ni,ki,j∈Xi,j

(Dk
ij(pi))

2 (3)

s.t. 1 ≤ ki,j ≤ N, ki,j ∈ Z, pi ∈ R3

Localization using Top N multipath peaks: Instead of rely-
ing on just the dominant signal peak AOAmax, we use the
Top N peaks in the AOA profile (See Sec. III-D) to improve
the localization accuracy. N is set to 3 as the upper bound
of peaks being used. The schematic in Fig. 9 shows how the
Top N peaks are used to localize the robot.
Evaluation: Potential outlying AOA measurements are re-
jected using profile variance σij = 0.9 (See Eq. 2). Aggregate
results for localization accuracy in NLOS using estimated
displacement from the odometer, tracking camera, and mo-
tion capture are shown in Fig 10. The displacement estimated
from motion capture is used to obtain AOA profiles for
calculating the baseline localization error.

B. NLOS Rendezvous
In this application, a ground robot and an aerial robot

are initially separated by 15 meters with constant visual
occlusions creating a NLOS setting. Neither robot knows
the map, nor the position of the other robot at any time,
nor do they share the same coordinate frame. By deploying
the WSR toolbox on both robots, the aerial robot navigates
towards the ground robot using the AOAmax obtained from
the profile. The profile is generated continuously for every
∼1 meter displacement of the aerial robot (Fig. 12) it uses
the AOAmax to choose the next direction to move towards
to. This dynamic rendezvous application shows a navigation
use case where our toolbox was used and which can be

Fig. 12. Dynamic rendezvous between a UAV and ground robot using AOA
from our system. Video link: https://git.io/JuKOS

generalized to other collaborative navigation and exploration
tasks.

VI. DATASETS

We release the data of our hardware experiments to enable
offline testing, simulation of an NLOS wireless bearing
sensor, or potentially to support machine learning appli-
cations. It includes two subsets - LOS and NLOS. Each
subset includes ten locations of the receiving robot i along
a grid given fixed known locations of three transmitting
robots j ∈ Ni. The collected data consists of CSI data,
groundtruth displacements using the motion capture system,
and estimated displacements using a T265 tracking camera
as well as wheel odometry of a Turtlebot3 robot. The CSI
data consists of ≈880 packets per AOA profile. We also
include the calculated AOA and performance metrics for
these datasets which are provided in json format.

VII. DISCUSSION

We note that several other wirelss signals such as Ultra
Wide Band (UWB) and Bluetooth can present attractive uses
in robot systems. For example, other works have investigated
the use of UWB for localization and mapping and have
reported good performance [7]. Note that we do not suggest
WiFi as a replacement of other potential wireless signals that
could also have good uses for robotics. Indeed, Synthetic
Aperture Radar, which is the underlying principle of our
toolbox, can be applied to general wireless including signals
including UWB. This is an interesting avenue for future
investigation and would be compatible with our toolbox so
long as the phase of these signals are accessible and can be
provided as inputs to the toolbox. However in their native off-
the-shelf form, several of these solutions only provide single-
dimensional data (such as range) which makes generalization
to 3D more challenging. NLOS settings also become more
difficult to handle without a way to reconstruct the full
multipath profile.

The AOA profile can be leveraged in ways beyond those
discussed in Sec. VII. One idea would be to estimate the
direct signal path more accurately by observing how the
peaks in Top N change. The direct path peaks will undergo
minimal change proportional to the robots’ motion in con-
trast to multipath which changes non-deterministically [35].
More recently, improving resilience in multi-robot teams by
leveraging heterogeneous sensing modalities has also been
identified as an open problem [36]. The AOA profile obtained
from our toolbox has been leveraged in such contexts as

https://git.io/JuKOS


shown in [37] and can also be used in frameworks such
as [38], [39] to build more resilient multi-robot systems.
SLAM applications could use the AOA profile measured at
some location for loop closures as opposed to other wireless
signal-based approaches that use multiple signal strength
measurements from stationary signal access points [40].

VIII. CONCLUSION
This paper presents the WSR toolbox for computing

relative bearing between robots in a multi-robot setting using
their local displacement and received WiFi signal data. We
release pertinent datasets for many scenarios of operation
including LOS and NLOS environments and a localization
use case for which we include performance results. We hope
that this toolbox provides the robotics community with new
perception capabilities using WiFi-as-a-Sensor in general,
NLOS, and GPS-denied environments with implications for
localization, adhoc robot networks, and security of multi-
robot teams amongst other potential uses.
Acknowledgements: We are thankful to Todd Zickler for providing
access to his lab during NLOS experiments.
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